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Abstract:

Introduction:

In this article, we only focus on the probability distributions of the breakdown time whose causes are known, and we consider a
partition of the observations into subgroups according to each of the causes as defined in Njamen and Ngatchou [1]. By adapting the
stochastic processes developed by Aalen [2, 3], we derive a Kaplan-Meier [4] nonparametric estimator for the survival function in
competiting risks.

Result & Discussion:

In a region where there is  at  least  one observation,  we prove on one hand that  this  new nonparametric  estimator is  unbiased in
competiting risk and on the other hand, using the Lenglart inequality, we establish its uniform consistency in competiting risks.

Keywords: Censored data, Counting process, Survival function, Competiting risks, Kaplan-Meier estimators, Bias of an estimator,
Uniform consistency.

1. INTRODUCTION

1.1. Analysis of Survival Times

The main source of difficulty in survival analysis, and for various reasons, is the presence of missing data. For such
observations, conventional statistical procedures are no longer valid and more sophisticated statistical tools are used to
model such an observations in order to validate the experimental results. The left truncated data model experimental
designs frameworks for life times that have to be “large enough” to be observed. Indeed, the life time lenght T must be
greater than a truncation variable Y to be observed. Thus, observations are possible only if T ≥ Y. It is a model that first
appeared in astronomy, where samples are compound by astral objects from a certain area. The absolute and apparent
luminosities of an astral object are respectively defined as its observed brightness at a fixed distance and from the Earth
and one observe only objects that are bright enough, that is those for which the luminosity M ≥ m, are so-called left
truncated data, where m is the truncation variable. In that case, we have N objects in the sample, but we are able to
observe only the n objects sufficiently brilliant.

The other classical case of missing data is the so-called censored data on the right. This phenomenon of censorship
models experimental studies for certain diseases where patients can be lost to follow-up after a move or a non-inherent
death as a road accident. As an example, let us also analyze the reliability function of a machine M In this perspective,
the observation will concern the study of how n identical machines to M work and  we will denote T1,...,Tn the  lifetimes
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of these machines. These (random) variables will be assumed to be positive and from the same density f function. The
corresponding cummulative distribution function will be denoted F and the reliability function will be

This is a classical problem which is a focus for example to the automobile industry when it seeks to predict the
lifetime of a model. In a simplified framework where all lifetimes are observed, this problem admits elementary and
natural solutions. Natural and empirical estimators exist for the distribution function, for the survival function denoted
by S and for the cumulative hazard rate Λ = -log(S) which are respectively the empirical survival function for S and the
Nelson-Aalen estimator for Λ.

We are particularly interested in the more realistic framework where the observation of T1,...,Tn is missing. Let us
illustrate  this  problem  with  the  following  example.  In  an  ideal  setting,  an  automobile  manufacturer,  if  he  insures
maintenance  of  its  vehicles,  can  observe  the  moment  of  the  first  failure  of  each  vehicle  of  a  model  that  he  sells.
Therefore, he can easily determine if that model is reliable. More realistically, it may happen that the first failure of
certain  vehicles  can  not  be  observed  for  various  reasons  (sale  by  certain  owners,  accidents  independent  of  the
performance  of  the  vehicle,  ...).  In  that  case,  one  talk  about  a  censored  model:  i.e;  to  each  vehicle  i,i  =  1,2,...,n  is
associated a pair of random variables (r.v.) (Ti,  Ci) of which only the smallest one is observed, Ti  is the moment of
breakdown and Ci is the instant of censure.

The estimation of certain functions of this model is a much more sensitive time . To solve it, denote (Y1δ1), (Y2δ2),...,
(Ynδn) the observed sequence where, for all 1 ≤ i ≤ n,

Here Yi is the observed time and δi is a binary variable representing the nature of this duration which takes the value
1 if it is a true lifetime and 0 if it is a censorship.

It was only after the article of Kaplan and Meier [4], that Censored data have found the relevance that is theirs in
reality.

Articles and manuals dealing with censored data are several and generally use one or other of the two very different
approaches:  either  the  methods  of  classical  statistics  (Bailey  [5],  Kalbfleich  and  Prentice  [6],  Cox  and  Oakes  [7],
Moreau  [8],  Bretagnolle  and  Huber  [9],  often  using  combinatorial  cases  as  in  Guilbaut  [10],  either  the  one-time
processes as Gill [11], Andersen and Gill [12], Harrington and Fleming [13], Gross and Huber [14].

The nonparametric estimator of Kaplan and Meier (KM) of the survival function S is defined, in the case of non-
exequal, by

where  Y(1),  Y(2),...,Y(n)  are  the  ordered  values  of  Y(1)  and  for  each  of  the  values  δi  is  the  corresponding  indicator
function.

This estimator has similar properties to those of the empirical distribution function, in particular, it verifies a global
asymptotic normality theorem (Breslow and Crowley [15],). But it has also other properties which are typical of the
presence of censorship and have the interest of giving ideas when trying to construct other estimation procedures in the
presence  of  censorship.  Breslow  and  Crowley  [15]  were  the  first  to  discuss  its  convergence  and  its  asymptotic
normality. For more details, see Shorack and Wellner ([16], p.304).

1.2. Competiting Risks Model

1.2.1. Introduction

The model of competiting risks have been widely studied in the literature, see e.g. Tsiatis [17], Elandt-Johnson and
Johnson  [18],  Andersen  and  al  [19],  Crowder  [20].  Competiting  risks  problems  are  often  formulated  in  terms  of
potential or latent failure times corresponding to the different failure types. Let m be the number of risks acting on the

𝑆(𝑡) = ℙ(𝑇 > 𝑡) = 1 − 𝐹(𝑡). 

𝑌𝑖 = 𝑇𝑖 ∧ 𝐶𝑖et𝛿𝑖 = 11{𝑇𝑖≤𝐶𝑖}. 

1 − �̂�𝑛(𝑡) = {
∏𝑛
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population. For j = 1, let Tj be the r.v. representing the lifetime of an individual exposed to the risk of death from cause j
only. We assume that the Tj are proper, so that even in the absence of any other risk, an individual will experience an
event  of  cause  j  eventually.  The  random  variables  (T1,...,Tm)  are  called  the  net  lifetimes  corresponding  to  the  m
postulated possible causes of failure. We assume that each failure is due to a single cause and that the occurrence of an
event of a given type precludes the other events from occurring. Consequently, for each individual, we cannot observe
(T1) jointly but only the smallest Tj. For each individual, the observable r.v. consists of the overall failure time T and the
cause of failure C.

The independent risks model postulates that the Tj are stochastically independent of each other. Several authors have
shown that based on data from competiting risks, the assumption of independence of the different risks is not testable
because there is no way to distinguish between independent or dependent latent lifetimes. Tsiatis [17], showed that
without the hypothesis of independence of the different risks, the model of latent lifetimes is unidentifiable. Indeed, the
set  of  crude  distribution  functions  is  consistent  with  an  infinity  of  joint  distributions  of  latent  lifetimes.  To  each
dependent-risks model, there corresponds a unique independent-risks model with the same subdistribution functions.
But each independent-risks model has a whole class of satellite dependent-risks models. When the risks are dependent,
Klein and Moeschberger [21] showed that the product-limit estimator for the marginal distribution function pertaining
to a given risk converges with probability one to a function which may not be the same as the marginal function of
interest.

Historically, the main aim of competing risks was seen as the estimation of the marginal distributions. This consists
of taking data in which the risks act together and trying to infer how some of them would act in isolation i.e. to make
inference free of the “nuisance” aspects. This is an attempt to make inference about the net risks from observations on
the  crude  risks.  It  amounts  to  deriving  the  Fj  from  the  observations  of  (T,  C)  This  approach  is  justified  if  the
independence of the risks can be assumed. Otherwise, the counter-argument is that the Fj do not describe events that
physically occur, they only describe failures from some isolated cause in situations in which all the other risks have
been  removed  somehow.  If  the  risks  are  dependent,  it  is  the  cause-specific  distribution  function  Fj,  not  the  net
distribution  function  Tj,  that  is  relevant  to  the  real  situation  describing  failures  from  cause  j  that  can  occur  in  the
presence of all the other risks. Prentice and al [22]. emphasized these points in their criticism of the traditional approach
of  competiting  risks.  Cause-specific  subdistribution  functions  are  the  basic  estimable  quantities  in  the  dependent
competiting risks framework. But this does provide no information about the joint distribution of the lifetimes.

1.2.2. Methods for Analyzing Survival Data in Competiting Risks

Consider a population in which each subject is exposed to m  mutually exclusive competing risks which may be
dependent.  For  j {1,...,m},  the  failure  time  from  the  j-th  cause  is  a  non-negative  random  variable  (r.v.)  Tj.  The
competiting  risks  model  postulates  that  only  the  smallest  failure  time  is  observable,  it  is  given  by  the  r.v.  T  =
min(T1,...,Tm) with distribution function (d.f.) denoted by F. The cause of failure associated to T is then indicated by a
r.v. C which takes value j if the failure is due to the j-th cause for a j  {1,...,m} i.e. if T = Tj. We assume that T is, in its
turn, at risk of being independently right-censored by a non-negative r.v. C with d.f. G. Consequently, the observable
r.v. is

where δ(.) denotes the indicator function. As T and C are independent, the r.v. Z has d.f. H given by 1 - H = (1 - F)(1
-  G).  Let  τH  =  sup{t:H(t)  <  1}  denotes  the  rightendpoint  of  H  beyond  which  no  observation  is  possible.  The
subdistribution functions F(j) pertaining to the different risks or causes of failure are defined for j  {1,..,m} and t ≥ 0 by

For t ≥ 0, the quantity F(j)(t) represents the probability that an event of type j will occur before time t and that the
other types of event have not yet occurred at this time. The functions F(j) are improper distribution functions since they
are not worth 1 at infinity, i.e. limt → ∞ F(j) (t) < 1.

When the independence of the different competiting risks may not be assumed, the functions F(j) for j  {1,..,m} are
the basic estimable quantities.

(𝑍 = min(𝑇, 𝐶), 𝜉 = 𝜂𝛿), 

𝐹(𝑗) = ℙ[𝑇 ≤ 𝑡, 𝜂 = 𝑗]. 
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In  this  paper,  we  are  interested  supplying  the  consistency  of  the  nonparametric  Kaplan-Meier  estimator  of  the
survival function S j = 1 - F(j) for j = {1,...,m}in the presence of independent right-censoring in a context of competiting
risks.

The Kaplan-Meier estimator was developed for situations in which only one cause of failure and the independent
right-censoring are considered. Aalen and Johansen [23] were the firsts to extend the Kaplan-Meier estimator to several
causes  of  failure  in  the  presence  of  independent  censoring.  In  the  present  situation,  the  d.f.  F  may  be  consistently

estimated by the Kaplan-Meier estimator denoted by . For j  {1,..,m}, the subdistribution functions F(j) may be

consistently  estimated  by  means  of  the  Aalen-Johansen  estimators  denoted  respectively  by  ,  hence  the

nonparametric estimator of the survival function  = 1 -
 

 for j  {1,..., m}. Indeed, when the process of the
states occupied by an individual in time is a time-inhomogeneous Markov process, Aalen and Johansen [23] introduced
an  estimator  of  the  transition  probabilities  between  states  in  presence  of  independent  random right-censoring.  The
competiting risks set-up corresponds to the case of a time-inhomogeneous Markov process with only one transcient
state and several absorbing states (that can be labeled 1, ..., m).

2. PRELIMINARY RESULTS

Throughout this section, we recall some notions of literature that will be useful for the future and that will allow a
good understanding of this paper. Indeed: firstly, we recall the analysis of life-duration data in the classical case (see
Bailey [5], Kalbfleich and Prentice [6], Cox and Oakes [7], Moreau [8], Bretagnolle and Huber [9], Guilbaut [10], Gill
[11], Andersen and Gill [12], Harrington and Fleming [13], Gross and Huber [14]...); in a second case, we recall the
estimation of the data analysis of lifetimes in competitive risks that we use in this paper (see Njamen and Ngatchou [1],
Tsiatis [17], Anderson et al. [19], Moeschberger and Klein [21], Prentice and al [22], Aalen and Johansen [23], Njamen
[24]...).

2.1. Choice of Censorship

We work within the framework of a right random censorship:

Definition 1 Given an - sampleT1,...,Tnof a positive random variable T. We say that there is random censorship of
this sample if there is an-dimensional random variable (C1,...,Cn) such that, rather than observingT1,T2,...,Tn we observe

(1)

where Yi is the time actually observed.

Moreover, what is the nature of this duration: if δi = 1, it is a survival, if δi = 0, it is a censorship.

Example 1 During a biological experiment, we are interested in the cause of death that takes place after a period of
timeT that we wish to study the law, but another cause of death may occur before and thus prevent the observation of T
by a right censorship. The usual hypothesis, which allows us to carry out the calculations, is the independence of T and
C. This hypothesis has been relaxed by Jacobsen [25]. We notice, however, that if we allow a dependence betweenT and
C, the same law of the couple (Y C, 1T≤C) can come from several marginal laws different forT and C, which have as a
consequence a problem of identifiability.

The distribution of T is entirely characterized by five functions: cumulative distribution function, probability density

function, survival function, hazard function, cumulative hazard function (or integrated). Let (Ω,A, ) be a probability
space.

2.2. Identifiability Problem in a Censorship Model

Consider the censorship model defined by (1). If we know the law of observation of Y, can this allow to identify the
exact law of the variable of interest T ? In other words, if we knew perfectly the law of observations, could we deduce
the unique law of T (for example, its density function or its survival function)? It’s not always possible, because the fact
of having missing data implies a loss of information.

In  general,  if  durations  and  censures  are  not  independent,  it  is  not  possible  to  identify  the  law  of  T  from  the

∈

∈

�̂�𝑛

�̂�𝑛
(𝑗)

�̂�𝑛
(𝑗)

�̂�𝑛
(𝑗)

(𝑌𝑖, 𝛿𝑖)with𝑌𝑖 = min(𝑇𝑖, 𝐶𝑖)and𝛿𝑖 = 11{𝑇𝑖≤𝐶𝑖}, 
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observations. On the other hand, when durations and censures are independent, identification is possible.

For any cumulative distribution function L, we denote by τH = sup {t:L(t) < 1}.

On the other hand, Ln(.) shall designate a functional estimator of Ln(.). Finally,  (.) = 1 - L (.).

Proposition 1 In the case of a random right censorship C, if T and C are independent with cumulative distribution
function F and G respectively and if τF ≤ τG , then the law of T is identifiable from the law of the observations (Yi, δi).

Proof See Fermanian [26, p.11].

Remark 1 The hypothesis of independence between duration and censorship is not always realistic. In the case of
right censorship caused by the end of the survey process, it is natural. But when somebody is exposed to several risks of
death (in the case of competiting risks), it could be questionable: these risks are all dependent on the general state of
health (for example, vascular tension). A particular risk (for example, a heart attack) is likely to be correlated with
others (for example, a stroke) which, if they arise, censor it eventually.

2.3. Classical Case: Estimation of Survival Function

Let (Ω,A, ) probability space.

Let  T1,...,Tn  be a sequence of real  random variables of interest  independent and identically distributed (i.i.d.)  of
common cumulative distribution function F and of probability density f. Let C1,...,Cn be a sequence of random variables
of  censures  i.i.d.  of  the  continuous  cumulative  distribution  function  (c.d.f.)  G.  The  Ci  are  also  assumed  to  be
independent  of  the  Ti.

Let {(Y1, δ1)...(Yn, δn)} be the observed sample defined by (1). The (Yi)i are (c.d.f.), H is given by

Let H1 and H be the (c.d.f.) of uncensored and censored random variables (r.v.).

and

We have the identity

By classifying the (Yi) in ascending order, one obtains the statistic’s order

Denote Ii = [Y(i-1), Y(i)]. The non-parametric Kaplan-Meier (KM) estimator for survival function (s.f.) is also called PL
(Product-Limit) estimator because it appears as the limit of a product. This estimator is interested in estimating the
quantities of the form:

where pi is the probability of surviving during the interval Ii, when one is living at the beginning of this interval,
then qi = 1 - pi = probability of dying during this interval knowing that one was living at the beginning of this interval.

We now define the concept of a risky subject in order of getting its natural estimator of qi.

Definition 2 (Subject at risk) At each instant, we define the numberZn(t) of the subjects at risk as the number of
subjects present (i.e. neither dead nor censured) to t-

𝐿

ℙ

𝐻(𝑡) = 1 − 𝐻(𝑡) = 𝐹(𝑡)𝐺(𝑡),   ∀𝑡 ≥ 0. 

𝐻1(𝑡) = ℙ(𝑌𝑖 ≤ 𝑡, 𝛿𝑖 = 1) = ℙ(𝑇𝑖 ≤ 𝑡 ∧ 𝐶𝑖) = ∫
1

0
(1 − 𝐺(𝑠))𝑑𝐹(𝑠) 

𝐻0(𝑡) = ℙ(𝑌𝑖 ≤ 𝑡, 𝛿𝑖 = 0). 

𝐻(𝑡) = 𝐻0(𝑡) + 𝐻1(𝑡) = 𝐹(𝑡)𝐺(𝑡). 

𝑌(1) ≤ 𝑌(2) ≤. . . ≤ 𝑌(𝑛). 

ℙ(𝑇 ≥ 𝑌(𝑖)/𝑇 ≥ 𝑌(𝑖−1)) =: 𝑝𝑖 

𝑍(𝑡) = ∑𝑛
𝑖=1 11{𝑍𝑖≥𝑡} 
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Let us denote by  the number of uncensored observations that are less than or equal to the instant t, i.e.

Therefore a natural estimator of qi is

2.3.1. Expression of the Empirical Survival Function

If the data is not censored, Sn(t) can be estimated by the c.d.f.

(2)

where Fn(t) is the empirical c.d.f. of Ti. If observations (Ti) with censures are available, estimate S only by the data

(Ti), i = 1,...,n uncensored (δi = 1) provides a biased estimate. Indeed if we define an estimator ,

(3)

then by the law of large numbers we have:

(4)

because

Thus, in the case of censored data, the estimation of the survival function S requires specific tools. There are several
non-parametric methods among which the well known is the one of Kaplan-Meier. First, we define the non-parametric
estimator of the survival function, which can be deduced immediately from the estimation of cumulative risk function,

also called the cumulative hazard rate Λ, defined by Λ(t) = .

2.3.2. Nonparametric Estimator of the Survival Function

By the  relationship  =  exp(-Λ)  and  by  estimating  Λ by  the  Nelson-Aalen  estimator   defined  in  Njamen and
Ngacthou [1], We obtain the non-parametric estimator of the survival function of S given by:

(5)

It can also be written as the following:

where m(ti) denotes the number of “events” observed up to the moment ti and r(ti) is the number of “individuals” at
risk at time ti

.

 

 𝑁
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2.3.3. The Estimator of Kaplan-Meier (KM) [4]

In 1958, Kaplan and Meier proposed an estimator of the survival function S, also called a product-limit estimator. It
is based on the following idea: an “individual” is alive after the instant t means to be alive just before the instant t and
not to “die” at t.

Definition  3  At  any  point,  the  estimator  of  KM  of  the  survival  S  of  the  lifetime  variable  Ti  is,  with  the  above
definitions:

(6)

with 

If there is no ex-aequo (i.e. identical death times for several subjects), we can simply write (t) in the following
form:

(7)

The Kaplan-Meier non-parametric estimator Gn of G is obtained as the following:

Let T(1) ≤...≤T(n) be the associated statistics order, then the Kaplan-Meier estimator defined in (7) is rewritten for all t
by

(8)

where Ri = n-i + 1.

The identity (8) comes from the following property:

  

 

 

�̂�𝐾𝑀(𝑡) = ∏𝑛
𝑖=1 (1 −

𝛿(𝑖)

𝑛−𝑖+1
)

11
{𝑌(𝑖)≤   𝑡}

  

= ∏𝑖: 𝑌(𝑖)≤  𝑡 (1 −
𝛿(𝑖)

𝑛−𝑖+1
)  

= ∏𝑖: 𝑌(𝑖)≤  𝑡 (
𝑛−𝑖

𝑛−𝑖+1
)

𝛿(𝑖)

 
 

= ∏𝑖: 𝑌(𝑖)≤  𝑡 (1 −
1

𝑛−𝑖+1
)

𝛿(𝑖)

 

 

= ∏𝑖: 𝑌(𝑖)≤  𝑡 (1 −
1
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, 
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The Kaplan-Meier non-parametric estimator is widely used in several fields in the society (demography, actuarial
science,  psychology,  etc.)  and  in  the  basic  sciences,  particularly  in  epidemiology,  to  show  the  effectiveness  of  a
treatment compared to another one.

2.3.4. Examples of Analysis of Censored Data by the Kaplan-Meier Estimator

Example  2  (Friereich  and  et  al.,[27])  In  1963,  Freireich  et  al.  conducted  a  therapeutic  trial  to  compare  the
remission durations in weeks of leukemia according to whether they received 6-mercaptopyne or placebo (The control
group received placebo and the trial was double-blind).

Remission duration, in the week, according to treatment:

The  numbers  followed  by  the  sign  +  correspond  to  patients  who  were  lost  of  sight  or  “censored”  on  the  date
considered. They are therefore excluded “alive” from the study and we know only from them that their survival duration
is greater than the one indicated. For example, the fourth patient treated with 6M-P had a remission duration of more
than 6 weeks.

The calculations give us:

The Kaplan-Meier method consists of estimating the survival probability over a period of time, in other words, the
probability of being alive at the end of the interval if we were at the beginning of the interval. Therefore it is necessary
to calculate the number of patients presenting the event in this interval divided by the number of patients exposed to the
risk of the event during this interval.

Tables 1 and 2 provide general information about the two treatments.

Table 1. Summary in R of all the information about the 6MP.

t=6MP
Time N.risk N.event Survival Std.err Clower 95%CI Upper 95%CI

6 21 3 0.857 0.0764 0.720 1.000
7 17 1 0.807 0.0869 0.653 0.996
10 15 1 0.753 0.0963 0.586 0.968
13 12 1 0.690 0.1068 0.510 0.935
16 11 1 0.627 0.1141 0.439 0.896
22 7 1 0.538 0.1282 0.337 0.858
23 6 1 0.448 0.1346 0.249 0.807

    • �̂�(𝑡) = 1                                            si   0 ≤ 𝑡 < 6  

    • �̂�(𝑡) = (1 − 3/21)�̂�(6−) = 0,857   si   6 ≤ 𝑡 < 7  

    • �̂�(𝑡) = (1 − 1/17)�̂�(7−) = 0,807   si   7 ≤ 𝑡 < 10  

    • �̂�(𝑡) = (1 − 1/15)�̂�(10−) = 0,753   si   10 ≤ 𝑡 < 13  

    • �̂�(𝑡) = (1 − 1/12)�̂�(13−) = 0,690   si   13 ≤ 𝑡 < 16  

    • �̂�(𝑡) = (1 − 1/11)�̂�(16−) = 0,627   si   16 ≤ 𝑡 < 22  

    • �̂�(𝑡) = (1 − 1/7)�̂�(22−) = 0,538   si   22 ≤ 𝑡 < 23  

    • �̂�(𝑡) = (1 − 1/6)�̂�(23−) = 0,448   si   23 ≤ 𝑡.  

𝟔𝐌 − 𝐏 6 6 6 6+ 7 9+ 10 10+ 11+ 13 16 17+

19+ 20+ 22 23 25+ 32+ 32+ 34+ 35+   

𝐏𝐥𝐚𝐜𝐞𝐛𝐨 1 1 2 2 3 4 4 5 5 8 8 8
8 11 11 12 12 15 17 22 23
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Table 2. Summary in R of all the information about the 6MP.

t = P
Time N.risk N.event Survival Std.err Clower 95%CI Upper 95%CI

1 21 2 0.9048 0.0641 0.78754 1.000
2 19 2 0.8095 0.0857 0.65785 0.996
3 17 1 0.7619 0.0929 0.59988 0.968
4 16 2 0.6667 0.1029 0.49268 0.902
5 14 2 0.5714 0.1080 0.39455 0.828
8 12 4 0.3810 0.1060 0.22085 0.657
11 8 2 0.2857 0.0986 0.14529 0.562
12 6 2 0.1905 0.0857 0.07887 0.460
15 4 1 0.1429 0.0764 0.05011 0.407
17 3 1 0.0952 0.0641 0.02549 0.356
22 2 1 0.0476 0.0465 0.00703 0.322
23 1 1 0.0000 NA NA NA

The two tables above, obtained from the R code > summary(s), allow us to have not only the survival of all the
events at risk, but also Greenwood’s approximations of the variance of survival, as well as the confidence interval in the
survival curve.

The following graphs, obtained by the R software, allow us to compute the curve of treatment with 6-mercaptopuria
and the curve of treatment with Placebo.

Figs. (1 and 2) represent respectively the survival curve with the evolution of the number of patients at risk during
the follow-up, whose the survival curve is the graphical representation of the survival function, i.e. the probability of
survival as a function of time. At the beginning of each curve, 100% of patients are alive (probability 1), it’s a stepped
curve with a step corresponding to each event. The height of the step is proportional to the number of events on the
interval. The lost-of-view is represented by vertical bars throughout the step of the staircase. If the censors are too many
and  taint  the  graph,  they  are  not  respected,  which  is  not  the  case  for  the  two  graphs  above.  The  accuracy  of  the
estimation of those survival curves Figs. (1 and 2) is represented by a confidence interval of 95%. This interval takes
the  form of  two curves  corresponding to  the  upper  limit  and the  lower  limit  (see  in  the  dashed lines  in  the  graphs
above). This interval has a probability of 95% to include the true survival curve. The two survival curves above are
under the form of steps, continuous by lump and jumps at each point of discontinuity.

Fig. (1). Estimation of K-M for 6-mercaptopurnie.
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Fig. (2). Estimation of K-M for Placebo.

These two curves can also be obtained in the same graph, which will make it possible to obtain a more precise and
concise analysis:

Note  that  Fig.  (3)  graph  above  contains  two  curves  representing  the  follow-up  of  treatment  with  by  6-
mercaptopurine  and  placebo  treatment.  This  graph  is  obtained  by  software  R.  These  are  staircase  curves  with  the
corresponding margin for each event. The height of the margin is proportional to the number of events on the interval.
The lost-of-view is represented by vertical bars throughout the staircase. These two survival curves are in the form of a
staircase, continuous by piece and have jumped at each point of discontinuity. Finally, we note that the 6-MP treatment
curve is higher than that of the Placebo effect. Hence the 6-MP treatment effective.

Fig. (3). Curve of K-M of the survival function for Freireich data.

2.3.5. Properties of the KM Estimator in the Classical Case

The  asymptotic  properties  of  the  KM  estimator  have  been  studied  by  several  authors  (see  e.g  Peterson  [28],
Andersen et al. [19], Shorack and Wellner [16]). A consistency property of the KM estimator is given by:

Theorem 1 If  the survival T of the distribution function F and the censure C of the distribution function G are
independent, then
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Proof See Shorack and Wellner ([16], p. 304).

The first strong representation of Fn-F by an average of v.a. i.i.d. was obtained by Burke and et al [29, 30], with a
remainder  of  order  O(n-1/2logn2n).  This  result  is  based on the work of  Komlos,  et  al.  [31],  on the approximation of
empirical processes. A second type of approximation was established by Lo and Singh [32], with a negligible term of
order O((n-1logn)3/4). This rate was then improved to O(n-1logn) by Lo et al [33].

2.4. Case Where The Modeling is in a Contest of Competiting Risks

2.4.1. Estimation of Lifetimes in Competiting Risk

The modeling done in this work is that obtained from Njamen and Ngatchou [1]. We recall the main lines of this
modeling: let τ1, τ2,...,τm be a continuons random variables representing respectively the lifetimes in each of the m risks

competing, J = {1,2,...,m}  {0}  be the set of index cause, where 0 corresponds to the condition of the individual
observed, T = min(τ1, τ2,...,τm) the random variable case, where η = j if T = τj , for all j = 1,2,...,m, F is the distribution

function of T, S = 1 - F the survival function such that S(t) =  [T > t], the random variable C of the event censoring
right, δ = 11T ≤ C and for technical reasons, ξ = η δ such that ξ = j if (T ≤ C and η = j) and ξ = 0 if T > C.

We notice that δ and ξ are observable and η is so only for T uncensored.

We assume that censorship is not informative. The joint law (T,η) is completely specified by the specific incident
distributions cause j ,F(j) (t) defined by

(9)

which are none other than the sub-distribution of the specific cause of failure j = 1,...,m. The cumulative hazard rate
of specific-cause j (j = 1,...,m) corresponding to (1) is given by

(10)

Let (Z1, δ1, ξ1)...(Zn, δn, ξn) be n- sample of observable triplet (Z1, δ1, ξ1) where Zi = min(Ti, Ci) and δi = 11{Ti≤Ci}, which
Ti  =  min(τi

1,...,τ
i
m)  and  where  τi

j  represents  the  time  that  an  individual  i  is  subject  to  the  cause  j.  If  Ti  and  Ci  are
independent, the random variable Zi admits distribution function Hi defined by 1 - Hi = (1 - Fi) (1 - Gi). Nelson-Aalen’s
estimator of Λj is given for j = 1,...,m by (see e.g in Andersen et al [19].)

(11)

which

(12)

and where

(13)

is the counting of the number of failures observed in case of j the time interval [0, t] and

(14)

is the number of individuals in sample observation that survive beyond time t. Thus, for any j  {1,..,m}

(15)

 sup
0≤𝑡≤𝜏𝐻

|𝐹𝑛(𝑡) − 𝐹(𝑡)| → 0𝑝. 𝑠. (𝑛 → ∞). 

⋃

ℙ

 𝐹(𝑗)(𝑡) = ℙ[𝑇 ≤ 𝑡, 𝜂 = 𝑗],    𝑗 = 1, . . . , 𝑚 

 Λ(𝑗)(𝑡) = ∫
𝑡

0

𝑑𝐹(𝑗)(𝑠)

1−𝐹(𝑠−)

 Λ̂𝑛
(𝑗)

(𝑡) = ∫
𝑡

0

𝐽(𝑠)𝑑𝑁(𝑗)(𝑠)

𝑌(𝑠−)
= ∑𝑍𝑖≤𝑡

1{𝜉𝑖=𝑗}

𝑌(𝑍𝑖
−)

 𝐽(𝑡) = 1{𝑌(𝑡)>0}

 𝑁(𝑗)(𝑡) = ∑𝑛
𝑖=11{𝑍𝑖≤𝑡,𝜉𝑖=𝑗}

 𝑌(𝑡) = ∑𝑛
𝑖=11{𝑍𝑖≥𝑡}

 𝑌(𝑗)(𝑡) = ∑𝑛
𝑖=1 1{𝑍𝑖≥𝑡,𝜂𝑖=𝑗}.

∈
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The relation between the cumulative hazard rate Λ*(j) and survival S*(j) = 1 - F*(j) in the subgroup Aj is given by

(16)

is given by

(17)

Since  (Zi)  is  a  Markov  process  comprising  a  state  transcendant  and  m  absorbent  states,  the  F(j)  functions  are
estimable using the corresponding Aalen-Johansen [23], estimate defined for t ≥ 0 by:

(18)

where H-
n is the continuous left-hand modeling of the empirical distribution function Hn defined for t ≥ 0 by

The expression of the Aalen-Johansen the estimator implies equally the modification continue to the left   of
Kaplan-Meier the estimator of F while is defined for all t ≥ 0 by:

(19)

The final estimator obtained for the cumulative hazard rate Λ*(j)(t) due to the specific cause j and the corresponding
distribution function F*(j) (t) given by (13) and (16) are written by

(20)

and

(21)

respectively.

The relation between the Kaplan-Meier  estimator and Λ*(j)
n in the context of competiting risks is given for all

t ≥ 0 by:

(22)

where

is a sub-distribution of Hn(t), and where for all t ≥ 0,

is the Nelson-Aalen estimator for the specific cause of the cumulative hazards Λ(j).

2.4.2. Properties of KM Estimator in Competitive Risks

Theorem 2 (Aalen and Johansen [23]; Andersen et al [19].) Letσ < τH. Assuming that the subdistribution functions

 𝐹∗(𝑗)(𝑡) = ℙ[𝑍 ≤ 𝑡|𝜂 = 𝑗],1 ≤ 𝑗 ≤ 𝑚 

 �̂�𝑛
∗(𝑗)

(𝑡) =
1

𝑛
∑𝑛

𝑖=1
1−�̂�𝑛

−(𝑍𝑖)

1−𝐻𝑛
−(𝑍𝑖)

1{𝑍𝑖≤𝑡,𝜉𝑖=𝑗}for𝑗 = 1, . . . , 𝑚

 1 − 𝐹𝑛
∗(𝑗)

(𝑡) = ∏𝑛
𝑖=1 (1 −

1{𝜉𝑖=𝑗} 1{𝑍𝑖≤𝑡}

𝑌−(𝑗)(𝑍𝑖))
). 

 𝐻𝑛(𝑡) =
1

𝑛
∑𝑛

𝑖=1 11{𝑍𝑖≤𝑡}. 

 �̂�𝑛
∗(𝑡) = 1 − ∏𝑛

𝑖=1 (1 −
1{𝑍𝑖≤𝑡,𝜉𝑖=0}

𝑛(1−𝐻𝑛
−(𝑍𝑖))

). 

�̂�𝑛
∗ 

 Λ̂𝑛
∗(𝑗)

(𝑡) = ∫
𝑡

0

1
{𝑌(𝑗)(𝑠)>0}

�̂�(𝑗)(𝑠−)
𝑑𝑁(𝑗)(𝑠) 

 �̂�𝑛
∗(𝑗)

(𝑡) = 1 − ∏𝑠≤𝑡 (1 −
𝑑𝑁(𝑗)(𝑠)

�̂�(𝑗)(𝑠−)
) = 1 − ∏𝑍𝑖≤𝑡 (1 −

1{𝜉𝑖=𝑗}

�̂�(𝑗)(𝑍𝑖)
) for𝑗 = 1, . . . , 𝑚 

�̂�𝑛
∗(𝑗)

 

 

�̂�𝑛
∗(𝑗)

(𝑡) = ∫
𝑡

0

𝜉𝑛(1−�̂�𝑛
−)

1−𝐻𝑛
− 𝑑𝐻𝑛

(1,𝑗)
(𝑠) = ∫

𝑡

0
𝜉𝑛(1 − �̂�𝑛

−)𝑑Λ𝑛
∗(1,𝑗)

(𝑠), 

 
𝐻𝑛

(1,𝑗)
(𝑡) =

1

𝑛
∑𝑛

𝑖=1 11{𝑍𝑖≤𝑡,𝜉𝑖=𝑗}, 𝑗 ∈ {1, … , 𝑚}, 

 Λ𝑛
∗(1,𝑗)

(𝑡) = ∫
𝑡
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𝑑𝐻𝑛
(1,𝑗)

1−𝐻𝑛
− , 
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F *(j)are continuous for j = 1,..., . Asn→ ∞ we have:

3. MAIN RESULTS

Let T be a positive random variable and C be a censoring variable such that Z = T C and δ = 11{T≤C}. In this model
of random censorship, for a sample i = 1,...,n subject to specific causes j(j = 1,...,m), we can observe the couple (Zi, δi)
where Zi = min(Ti, Ci) and δi = 11Ti≤Ci

 with Ti = min(τi
1,...,τ

i
m) and where τi

j is the time that an individual i is subject to the
cause j.

The survival function of each individual subject to a specific cause j is defined for all j = 1,...,m by S(j) (t) = 1 - F(j) (t)

= (τj > t). So in a region where we have at least one observation, S* = 1 - F*. Applying the previous sub-section 2.4.1,

we have (t) = 1 - (t) where (t) is the Kaplan-Meier estimator defined in Njamen and Ngatchou [1].

3.1. The Bias of the Non-Parametric Kaplan-Meier Estimator [4] on the Survival Function in Competiting Risks

The following theorem is the first fundamental result of this paper. It shows that the Kaplan-Meier nonparametric
estimator [4] on the survival function possesses a bias in competing risks.

Theorem 3 The non-parametric estimator defined by

(23)

possesses a bias.

Proof

Since  - 1 is a local martingale of integrable square on [0, τ[ zero in t = 0 (see Lopez [34],), we deduce that:

We have

So

𝒥

 sup
𝑡∈[0,𝜎]

|�̂�𝑛
∗(𝑗)

(𝑡) − 𝐹∗(𝑗)(𝑡)| →
ℙ

0. 

∧

ℙ

�̂�𝑛
∗(𝑗)

�̂�𝑛
∗(𝑗) �̂�𝑛

∗(𝑗)

�̂�𝑛
∗(𝑗)
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and since the mathematical mean is linear, we have:

From where

or again

Consequently, the bias is

Hence the proof of the theorem.

The uniform consistency of Kaplan-Meier’s nonparametric estimator (1958) is given in the following subsection:

3.2. Uniform Consistency of the Kaplan-Meier Nonparametric Estimator of the Survival Function in Competing
Risks

The following theorem is the second fundamental result of this paper. It gives the uniform consistency of Kaplan-

Meier’s nonparametric  of the survival S*j in a region where there is at least one observation:

Theorem 4 If for t > 0,F*(t), < 1 and , then for j  {1,...,m}

(24)

Proof For all j  {1,...,m} the nonparametric estimator of Kaplan-Meier [4] verifies  where

 is defined by

Thus, to show that

It is sufficient to show that

To achieve this, we have by hypothesis t  > 0,F*(t), < 1 and . By Theorem 3.2.3 p.97 of
Fleming and Harrington [35], we have:
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where

It is sufficient to show that

to have

By the inequality of Lenglart, for positive η and ε and for all j = 1,...,m we have:

On the other hand,

hence

As ε and η are arbitrarily chosen, it is deduced that

Therefore

Hence the result.

CONCLUSION

In this paper, we first show that the nonparametric Kaplan-Meier estimator of the survival function has a bias in
competing risks, and in a second step, we have established its uniform consistency.
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(𝑠) − 𝐹∗(𝑗)(𝑠)| →
ℙ

0        (𝑛 → ∞),        pour    𝑗 ∈ {1, . . . , 𝑚}. 

 ℙ ( sup
0≤𝑠≤𝑡

|𝑍𝑛(𝑠)|2 ≥ 𝜀) ≤ ℙ ( sup
0≤𝑠≤𝑡

|∫
𝑠

0
(

1−�̂�𝑛
∗(𝑗)

(𝑢−)

1−𝐹∗(𝑗)(𝑢)

11{�̂�𝑛(𝑢)>0}

�̂�𝑛(𝑢)
) 𝑑𝑀𝑛

(𝑗)
(𝑢)|

2

≥ 𝜀) 

 ≤
𝜂

𝜀
+ ℙ (∫

𝑠

0
(

1−�̂�𝑛
∗(𝑗)

(𝑢−)

1−𝐹∗(𝑗)(𝑢)

11{�̂�𝑛(𝑢)>0}

�̂�𝑛(𝑢)
)

2

𝑑 < 𝑀𝑛
(𝑗)

>𝑢≥ 𝜂) 

 ≤
𝜂

𝜀
+ ℙ (∫

𝑠

0
(

1−�̂�𝑛
∗(𝑗)

(𝑢−)

1−𝐹∗(𝑗)(𝑢)
)

2
11{�̂�𝑛(𝑢)>0}

�̂�𝑛(𝑢)
𝑑Λ∗(𝑗)(𝑢) ≥ 𝜂) 

 ≤
𝜂

𝜀
+ ℙ (

1

(1−𝐹∗(𝑗)(𝑡))2

1

�̂�𝑛(𝑡)
Λ∗(𝑗)(𝑡) ≥ 𝜂) 

 ≤
𝜂

𝜀
+ ℙ (�̂�𝑛(𝑡) ≤

Λ∗(𝑗)(𝑡)

𝜂(1−𝐹∗(𝑗)(𝑡))2). 

 
�̂�𝑛(𝑡) →

ℙ
∞        (𝑛 → ∞), 

 ℙ (�̂�𝑛(𝑡) ≤
Λ∗(𝑗)(𝑡)

𝜂(1−𝐹∗(𝑗)(𝑡))2) → 0        (𝑛 → ∞). 

 ℙ ( sup
0≤𝑠≤𝑡

|𝑍𝑛(𝑠)|2 ≥ 𝜀) → 0        (𝑛 → ∞). 

 
sup

0≤𝑠≤𝑡
|�̂�𝑛

∗(𝑗)
(𝑠) − 𝐹∗(𝑗)(𝑠)| →

ℙ
0        (𝑛 → ∞),    for    all   𝑗 ∈ {1, . . . , 𝑚}. 
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