
 The Open Statistics and Probability Journal, 2011, 3, 21-26 21 

 

 1876-5270/11 2011 Bentham Open 

Open Access 

Portfolio Analysis of Investments in Risk Management  

D.S.Hooda
1
 and M. Stehlík

2,
* 

1
Jaypee University of Engineering & Technology, A.B. Road, Raghogarh-473226 Distt. Guna-M.P, India  

2
Department of Applied Statistics, Johannes Kepler University, Freistädter Straße 315, 2. Stock A-4040 Linz a. D. Linz, 

Austria 

Abstract:  In many practical investment situations the amount of available memory on stock data is extremely huge. Thus 

many investors are attracted to base their decisions on the information "currently available in their minds" (see [1, 2]). In 

the present paper various risk measurement models having application in the investment management are discussed. First 

we explain the concept of mean variance efficient frontier and Markowitz’s model to find all efficient portfolios that 

maximize the expected returns and minimize the risk. Markovian risk measures are also mentioned. Some measures of 

portfolio analysis based on entropy mean-variance frontier are studied. Risk aversion index and Pareto-optimal sharing of 

risk are explained. In view of these facts it is very interesting to study how the investor should make investments so that 

his total expected return is maximized and the risk of losing his capital is minimized. A maximum entropy model in risk 

sharing is proposed and applied to some problems. 
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1. INTRODUCTION  

Every investor wants to maximize his profits by selecting 
proper strategy for investment. There are investments like 
government and bank securities, real estate, mutual funds 
and blue chips stocks which have low return but are rela-
tively safe because of a proven record of non-volatility in 
price fluctuations. On the other hand, there are investments 
which bring high returns, but may be prone to a great deal of 
risk and the investor makes loss in case the investment goes 
sour. To overcome the above mentioned problem the inves-
tor should invest his funds in a spread of low and high risk 
securities in such a way that the total expected return for all 
his investments is maximized and at the same time the risk 
of losing his capital is minimized. Since the various out-
comes as well as the probabilities of these outcomes and the 
return on a unit amount invested in each security are known, 
therefore, there is not much difficulty in maximizing the ex-
pected return. However, the main problem is to overcome 
risk factor. The earliest measure proposed regarding risk 
factor was variance of the returns on all investments in the 
portfolio and was based on the argument that risk increases 
with variance [3] gave the concept of mean-variance effi-
cient frontier and this enabled him to find all the efficient 
portfolios which maximize the expected returns and mini-
mize the variance.  

Also other standard models of portfolio selection under 
parameter uncertainty are typically based on the assumption 
that investors learn about the true data generating process of 
asset returns using all available information. This assumption 
requires investors to have up to date databases of extremely 
large size. However, [2] argued that many investors do not  
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use databases as econometricians, but make decisions based 
on the information currently available “in their minds”. In 
line with this argument [1] presents a model where individu-
als exert mental effort to estimate the parameters of an eco-
nomic model, by retrieving observations from a stock of 
memories. 

In our paper we would like to provide approaches how to 
reduce the "dimensionality of the problem" of finding the 
optimal investment, which is typically not uniquely defined. 
The main principle we use is the information theory ap-
proach [4]. Made a brief account of application of entropy 
optimization principles in minimizing risk in portfolio analy-
sis [5] have applied these principles in characterizing crop 
area distributions for optimal yield. In this paper we make a 
study of various risk measure models and discuss their utili-
ties in finance management. The paper is organized as fol-
lows. 

In section 2 we discuss the Markowitz Mean-Variance-
Efficient Frontier and interpret it in the context of maxEnt 
optimization. In section 3 we discuss the Maximum Entropy 
Mean-Variance Frontier. In section 4 we introduce the con-
cept of Markovian risk measure. In section 5 we discuss the 
Risk Aversion Index. In section 6 we discuss the Pareto-
Optimal Sharing of Risks. Finally in section 7 the Maximum 
Entropy principle in Risk Sharing is discussed.  

2. MARKOWITZ MEAN-VARIANCE-EFFICIENT 
FRONTIER 

Let j be the probability of jth outcome for j = 1,2,…,m 
and rij be the return on ith security for i = 1,2,…n, when jth 
outcome occurs. Then the expected return on the ith security 
is  

ri = 
j=1

m

jrij, i = 1,2,…,n (2.1) 
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Variance and covariance of returns are given by  

i
2
 = 

j=1

m

j(rij  ri)
2
, i = 1,2,…,n (2.2) 

and  

ik i k = 
j=1

m

j(rij ri)(rkj rk), i,k = 1,2,…, n ; i  k, (2.3) 

where ik is correlation coefficient. A person decides to in-

vest proportions x1, x2,…, xn of his capitals in n securities. If 

xi  0 for all i and 
i=1

n

xi = 1, then the mean and variance of 

the expected returns are given by  

E =R = 
i=1

n

xiri  (2.4) 

and  

V = 
i

n

xi
2

i
2
 + 2

i<kk=1

n

xixk ik i k  (2.5) 

Markowitz [3] suggested that x1, x2,…, xn be chosen to 
maximize E and to minimize V or alternatively, to minimize 
V keeping E at a fixed value.  

Now  

V = 
j=1

m

j(Rj R)
2
 (2.6) 

where Rj = 
i=1

n

xirij i.e. Rj is the return on investment when 

jth outcome arises, and R is the mean return on investment. 

 

Fig. (1). Source: made by ourselves 

Corresponding to each vector (x1, x2,…, xn), there are 
certain values of E and V, so that corresponding to each port-
folio, there is unique point in the E-V plane. In the Fig. (1) 
the arc AB gives the lower boundary at the convex region 
obtained. In this figure it can be easily seen that the portfolio 
corresponding to P is more efficient than the portfolio corre-
sponding to Q because the mean return for both is the same, 

but variance for Q is greater than that of P. Similarly the 
portfolio corresponding to P is also more efficient than the 
portfolio corresponding to R, because in both cases the vari-
ance is equal, while the mean return for P is higher than that 
for R. Thus the portfolio corresponding to any other point on 
the arc AB is more efficient than a portfolio corresponding to 
any other point inside the convex region. However, portfo-
lios corresponding to different points on the arc AB are not 
comparable, because in one portfolio the mean return may be 
higher, while for the other variance may be smaller. The 
portfolio corresponding to points of the arc AB are called 
mean-variance efficient frontier.  

If a person chooses the portfolio corresponding to B it 
gives the highest possible value for E, but V is large at B. 
This means the person is interested in making his expected 
income large and does not mind whether variance becomes 
large and his risk is increased. Such persons who do not 
worry about risks are also known as risk-prone. On the other 
hand, persons who want to avoid risk and are cautious are 
called risk-averse and they will choose points near A. Thus 
the choice of point on the arc AB depends on the attitude to 
the risk of the investor concerned.  

Markowitz's mean-variance (MV) efficient portfolio se-
lection is one of the most widely used approaches in solving 
portfolio diversification problem. However, contrary to the 
notion of diversification, MV approach often leads to portfo-
lio highly concentrated on a few assets. Also, this method 
leads to negative values for some portfolio weights (short 
sales), while in practice most asset managers are not allowed 
to sell short. On the other hand entropy is a well accepted 
measure of diversity and recently, some works analyzing the 
problem of portfolio diversification/optimization using in-
formation theory concepts have been done (see Bera and 
Park [6] and Luo [7]). In the next section of paper we discuss 
the maximum entropy mean variance frontier.  

3. MAXIMUM ENTROPY MEAN-VARIANCE  
FRONTIER  

One of the investor’s objective is to diversify his portfo-
lio so that out of all points on the mean-variance efficient 
frontier, he chooses that portfolio for which his investments 
in different stocks are chosen so as to make R1, R2,…, Rm as 
equal as possible among themselves. Any departure of R1, 
R2,.., Rm from equality is considered a measure of risk which 
can be minimized if we choose x1, x2,…, xn so as to maxi-
mize the entropy measure  

Rj

RJ

j=1

m
log

Rj

RJ

j=1

m
j=1

n

 (3.1) 

Since (3.1) does not include j’s, therefore, we can modify 

the principle to say that jRj’s should be as equal as possible 

i.e. the entropy of the probability distribution 
j RJ

R
should 

be as large as possible. For this we maximize  

 
j Rj

R
log J RJ

Rj=1

n

 (3.2) 
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subject to  

j RJ = R
j=1

m

 (3.3) 

Applying Lagrange’s method of multipliers, we get  

j Rj =
R

m
 (3.4) 

Thus according to our first principle RJ = R, while according 
to second principle 

Rj = 
1

j

R

m
 

 If j = 1/m i.e. if the outcomes are equally likely, the two 
principles give the same results.  

Again since we want Rj’s to be as equal as possible we want 
the probability distribution 

Pj = 
j Rj

R
 

to be as close to the probability distribution j as possible. 
So we chose x1, x2,…, xn to minimize either D(Pj, j) or 
D( j, Pj), as defined in (3.5) below.  

 If we use Kullback and Leibler [8]’s measure, it implies 

that j Rj

j=1

m

log Rj should be as small as possible. This is 

the third principle.  

Next to minimize D( j, Pj) we again apply Kullback-
Leibler’s measure and get  

j log
j

Pjj=1

m

 or j log j Rj

j=1

m

 

should be as small as possible, which is fourth principle. We 
can also use Harvda and Charvat [9]’s measure of directed 
divergence or cross-entropy. In that case we have to mini-
mize 

1

1
Pj j

1 1
j=1

m

or
1

1 j Pj
1 1

j=1

m

 

Thus according to 5
th

 and 6
th

 principle, we choose x1, x2,…, 
xn to minimize respectively 

1

1
E(R1 1) or

1

1
E(R 1) , where R = 

j

Pj
.  

4. MARKOVIAN RISK MEASURE 

Particularly, one can be interested in the risk measure 
based on the Markov inequality, 

so called Markovian risk measure (see [10]). Markov ine-
quality can be generalized as follows:  

Let  X  be a random variable,  a R.  Let 
  

(x, y)  be any 

Lebesgue measurable bivariate function and 
  

(x)  any non-

negative and non-decreasing function such that 

  
E[ ( X )] <  and 

  
E ( X , y) ( X ) <  for all relevant 

 
y.  

Then  

  

P{X a}
E ( X ,a) ( X )

E[ ( X )]
. (4.1) 

Supposing   X 0  with probability 1,  
  
a 0,  

  
(x, y) = x

r
/ y

r
 and  =1  in Markov inequality, one gets 

Markov inequality as a special case of (4.2). The risk meas-

ure  is a mapping from the set of risk (random) variables 

to the set of real numbers. It follows we put 
 
X = S ,  where 

 S  is a risk variable. In view of (4.2) it is not difficult to 

prove that, under certain conditions and for 

some
 
,0 1 , there exists a minimal value 

 M
 such that  

  
P[S >

M
] E[ (S ,

M
) (S )] / E[ (S )] 1. , 

which is the solution of the equation  

  
E[ (S ,

M
) (S )] / E[ (S )] =  (4.2) 

and is called a Markovian risk measure of the risk variable 

 S  at level .  

When 
 
=1,  the equation  

  
E[ (S ,

M
) (S )] / E[ (S )] =1 . (4.3) 

which is called the unifying equation. Many well-known 
insurance premium principles and corresponding risk meas-
ures follow from (4.4) as special cases i.e. the mean value 
principle, the zero-utility premium principle and the Swiss 
premium calculation principle (see also [10]). For dividend 
strategies of insurance companies see [11]. 

5. RISK AVERSION INDEX  

Let us consider a lottery in which the returns are x1, 
x2,…, xn with probabilities p1, p2,…, pn so that mean mone-
tary return is  

x = pixi
i=1

n

 (5.1) 

It may be noted that the utility, u(x), of an amount x is 
not always proportional to x. If the monetary value is dou-
bled, for some persons the utility increases, but it is less than 
double of the previous one. Such persons are also called risk-
averse and those for which the utility is more than doubled 
will be called risk-prone. Thus the attitude to risk of every 
person is characterized by u(x). For risk-averse persons, u(x) 
increases at a decreasing rate i.e. u (x) < 0 or u(x) is concave 
function, while for risk-prone persons u (x) > 0 and u(x) is a 
convex function and for risk-neutral persons u (x) = 0 .  

Pratt [12] and Arrow [13] defined a risk-aversion index 
(RAI) as  

RAI =  
u ''(x)

u '(x)
 (5.2) 
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It can be easily verified that if u(x) = log x, then RAI = 
1/x > 0 and if u(x) = e

x
, then RAI = 1 < 0 and RAI = 0 in 

case u(x) = x.  

Next, we explain how the expression (5.2) can be obtained 

by two different methods. We define x = pixi
i=1

n

 as certain 

monetary equivalent (CME) and also define  x  by 

 u(X +  x ) = piu
i=1

n

(X + xi), (5.3) 

where X is the positive initial capital. (5.3) can be written as  

u(X +  x  + x  x) = piu
i=1

n

(X + x + xi x)  

or  

u(X+x) + ( x x)u (X+x) + 
 

(x x )2

2!
u ''(X + x )+ ...  

 = u(X+x) + 

pi (xi x )u '(X + x )+ pi
(xi x )2

2!
u ''(X + x )+ ...

i=1

n

i=1

n

 

Neglecting ( x   x)
3
 and higher orders in this Taylor series 

expansion, we have 

x   x  =  
1

2

u ''(X + x ) x
2

u '(X + x )
=
1

2
(RAI ) x

2
 (5.4) 

 Thus CME exceeds x
~

 by an amount proportional to 
RAI and this arises due to the attitude to risk of the investor. 
The concept of RAI can be generalized for u(x, y) and we get  

RAI = r11 x
2
 + 2r12 x y + r22 y

2
,  (5.5) 

where risk averse functions are 

This can be further generalized for u(x1, x2,…, xn) to get  

RAI =  
1

2
rii i

2
+ 2 rij i j

j=1

m

i=1

n

i=1

n

,  (5.6) 

where  

rij =  
2u

xi x j

u

xii=1

n 2 1/2

 

If risk aversion index for two variables is 0, then  

uxx x
2
 + 2uxy x y + uyy y

2
 = 0 ,  

which is an elliptic partial differential equation of second 
order.  

6. PARETO-OPTIMAL SHARING OF RISKS  

A number m of persons agree to share risks in a business 
on basis of optimal sharing of risks and profits in such a 
manner that no individual can increase his expected utility 
without decreasing the expected utilities of others.  

Let a risk have n possible states s1, s2,…, sn with pay-
ments x1,x2,…, xn and with probabilities p1, p2,…, pn. Let 
payments be partitioned among m individuals whose utility 
functions are  

u1, u2 ,…,um. Let xij be the payment of jth individual in case 
of ith outcome, then the expected utility of this partitioned 
risk is given by  

uj = piu j xij
i=1

n

 , j = 1,2,…,m , where xij
j=1

m

= xi. (6.1) 

We can plot the m expected utilities in m dimensional 
space. If the m expected utilities are negative, then no parti-
tion is acceptable because (0, 0,…, 0) will be preferred by 
all. In case all ui’s are positive, we maximize  

iui + 2u2 + …. mum 

subject to j =1, j

j=1

m

> 0 . Thus we get a linear hyperplane  

1u1 + 2u2 + … + mum = k( 1, 2,…, m)  

The envelope of this hyperplane gives the equation of the 
Pareto optimal hyperplane. All points of this hyper-surface 
are accepted but which point is chosen depends on the rela-
tive bargaining power of the partner or they can choose the 
point of intersection with the line 

u1 = u2 = … = um. Thus this equitable Pareto optimal 
sharing can be obtained instead of individual. We can have 
groups fighting for increasing their social, political or eco-
nomic utilities and arriving at Pareto Optimal Equilibria. 
When these equilibria are disturbed, new Pareto optimal 
equilibrium positions have to be obtained.  

7. MAXIMUM ENTROPY PRINCIPLE IN RISK 
SHARING  

The Pareto optimal boundary gives infinity of solutions 
and we need one more criterion to get a unique solution. This 
is possible by considering that payments are divided as uni-
formly as possible subject to other constraints Kapur [14]. 
For this we maximize the following measure of entropy as 
suggested by Kapur [14]:  

H* =  pi
i=1

n xij
xi
log

xij
xi
=

pi
xi

xij log xij + pi
i=1

n

log xi
j=1

m

i=1

n

j=1

m

 

=  
pi
xi

xij
j=1

m

i=1

n

log xij + constant. (7.1) 

Thus out of all Pareto Optimal solutions we choose that 
one which maximizes H*.  

Raiffa [15] has shown that the Pareto Optimal solution is 
obtained by maximizing  

r11 =  
1

2

uxx
(ux

2
+ uy

2 )1/2
, r12 =

uxy
(ux

2
+ uy

2 )1/2
, r22 =

1

2

uyy
(ux

2
+ uy

2 )1/2
. 
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ju j =
j=1

m

j piu j (xij )
i=1

n

j=1

m

 

= pi ju j (xij )
j=1

m

i=1

n

 (7.2) 

subject to  

xij = xi , j =1
j=1

m

j=1

m

. 

This will determine xij in term of 1, 2,…, m.  

Example 1. Special Case of Exponential Utility Function  

Let us consider  

uj(x) = 1 e
x

cj , j = 1,2,…., m (7.3) 

We maximize pi j (1 e

xij
c j )

i=1

n

 subject to  

xij = xi , j =1
j=1

m

j=1

m

 (7.4) 

Following Lagrange’s method of multiplier, we get  

xij
cj
=
xi
c

cj
c
log j

c j
+ log j

c jj=1

m

, (7.5) 

where c = cj
j=1

m

. Substituting in (6.1) and differentiating 

w.r.t. k  

H *

k

= pi
i=1

n

log(1+ xij )
ck
c

1

k

+
1

j

+ jk

j=1

m

 

= pi
ck

k

(1+ log xij
cj
c

log(1+ xik )
j=1

m

i=1

n

 (7.6) 

Since k =1
k=1

m

 , this gives  

c1(A B1 )

1

=
c2 (A B2 )

2

= ...=
cn (A Bn )

n

=

CA BJCJ

j=1

m

1
 (7.7) 

where  

A = pi log(1+ xij )
cj
c
and Bk

j=1

m

= pi log(1+ xik )
i=1

n

i=1

m

 

Using (7.4), (7.5), (7.7) and (7.8) we can solve for xij’s 
and j’s.  

Example 2. Estimation and testing for the Utility 
function 

Let us assume the exponential utility function uj(x) = 1-
exp(-x/cj); j = 1; 2; :::; m:. In economics exponential utility 
refers to a specific form of the utility function, used in many 
contexts because of its convenience when uncertainty is 
present. Formally, exponential utility is given by the 
assumption that x and cj are constants. For such a testing we 
employ an efficient LR test of scale-homogeneity hypothesis 

H0 : c1 = : : : = cN  (21) 

for i.i.d. observations from exponential utility function 
versus general (nonH0), or more sophisticated finite scale 
mixture alternatives ([16]). 

Under the homogeneity we justify the maximum 
likelihood estimator and provide the exact LR test of the 
scale parameter value, i.e. 

H0 : c = c0 versus H1 : c  c0:  (22) 

The tests of homogeneity and scale can be choosen to be 
asymptotically optimal in the Bahadur sense when the 
underlying distribution is exponential, (see Rublík [17, 18] 
and Stehlík 16]). For estimation of general utility function 
see Stehlik [19]. 
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