
 The Open Statistics & Probability Journal, 2010, 2, 9-14 9 

 

 1876-5270/10 2010 Bentham Open 

Open Access 

Nonlinear Regression Models with Applications in Insurance 

Rastislav Potock  and Milan Stehlík* 

Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius Univer-

sity, Mlynská dolina, 842 48 Bratislava 4, Slovak Republic  

Abstract: Two possible applications of nonlinear regression models in insurance are discussed. The first part deals with 

modelling IBNR reserves when a cubic approximation to the solution locus is used instead of linear or quadratic ones. A 
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1. INTRODUCTION 

Due to the latest developments in insurance and reinsur-

ance industries nonlinear regression models became more 

popular with steadily increasing importance. Let us mention 

two up-to date applications: nonlinear credibility estimation 

and nonlinear modelling of IBNR reserves (i.e. reserves for 
incurred but not reported losses). 

De Vylder [1] extended Hachemeister’s linear regression 

credibility model to a nonlinear regression model by assum-

ing that observations are an arbitrary function f( ( )) of the 

unknown vector ( ). This model lacks of robustness of 

credibility estimators. Pitselis [2] applied robust statistics to 

De Vylder’s nonlinear credibility estimation and presented 
an application to Hachemeister’s data.  

The process of IBNR modelling and estimation has been 

studied by actuaries for many years since both RBNS 

(reported but not settled) and IBNR reserves are the largest 

liabilities of insurance companies. Recall that incurred but 

not reported loss or IBNR is the difference between ultimate 

loss and reported loss. Thus quantifying the uncertainty in 

estimation of IBNR plays the important role in insurance 

business. The classical approach makes use of run-off trian-

gles (e.g. the chain-ladder method and its modifications). 

There exist also direct methods for computing or modelling 

of IBNR, for instance those using copulas and indirect meth-

ods based on estimation of loss development factors. For 

instance, Stelltjes [3] presents a model for predicting losses 

as a function of exposures, calendar period and development 

age. Typically, then a nonlinear regression model is used for 

estimating the 95% confidence interval of IBNR loss for an 

accident period.However using the quadratic approximation 
 

 

*Address correspondence to this author at the Institut für angewandte Statis-
tik, Johannes Kepler University in Linz, Freistädter Strasse 315, 2. Stock, A-
4040 Linz a. D., Austria; Tel:+43 732 2468 5881; Fax: +43 732 2468 9846; 
E-mails: mlnstehlik@gmail.com, Milan.Stehlik@jku.at 

of the model function may lead to inaccurate confidence 
regions for parameters of the model.  

Consider the usual nonlinear regression model 

ya =f( xa ,  )+ ea                 a= 1,...n                                    (1) 

 
Y =(y1,...yn)´ denotes the vector of observations, the func-

tion  f(  ) = (f (x 1,  ),..., f( xn,  ))  has a known form de-

pendent on p unknown parameters  = ( 1,... p )´, xa are 

known vector-valued variables, ea are independent and nor-

mally distributed random errors with zero mean and  vari-

ance  2. 

The problem of finding acceptable confidence regions for 

 has been discussed by many authors, see e.g. [4-6]. Cook 

and Goldberg [7] showed examples of models for which the 

Bates-Watts methodology based on quadratic approxima-

tions did not work. On the other hand Clarke [8] presented a 

method of constructing regions with higher precision. How-

ever, his investigations deal with a single parameter i , not 

with the whole vector . The aim of our paper is to construct 

confidence regions based on cubic approximation which are 

more accurate than those currently used. 

In what follows pre-and post-, square bracket and  

multiplications of a three-dimensional array U••

•
 = Uij

a( ) or 

a four-dimensional array U•••

• = Ukij
a( )  by a matrix E mean 

summation over the indexes i, j, a, k, respectively. The 

reader is recommended to consult Table 1 for better under-

standing of these operations. Recall that if U••

•
 = Uij

a( ) , 

a=1,…,n, i=1,…,p, j=1,…,q is an nxpxq array, then its  

a-th face is pxq matrix Uij
a( )  and its ij-th column 

ij

1

U ,...,
ij

n

U( )
T

is n-vector. 
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Put 

V =
fa

i =

, 
•

••V =
2 fa

i j =

 and 
•

•••V = 

3 fa

i j k =

 where a=1,…n, i, j, k=1,…p and  is the 

least –squares estimate of . Let V =UR  be the unique QR-

decomposition of V where R is an upper triangular matrix 

and the colums of U form an orthogonal basis for the column 

space of V. 

Recall that by the Bates-Watts parameter-effects array we 

understand the pxpxp  array 

A••
• = UT R 1( )

T
V••

•R 1  and similarly A•••
•
= UT

 

R 1 R 1( )
T
V•••

• R 1( )  is the four dimensional parameter-

effects array (for details see [9]). Bates and Watts have used 

A••
•

 to compute the maximum parameter-effects curvature 

which, together with the maximum intrinsic curvature, give 

answer to the question whether the model may be considered 

sufficiently linear or not for the set of values of parameters 

we are interested in. As mentioned above the quadratic ap-

proximation of the model function does not give satisfactory 

results in some cases, so a cubic approximation is needed.. 

Consider a partition = 1( )
T , 2( )

T( )
T

, 1( ) = 1,... q( )
T

, 

2( ) = q+1,... p( )
T

, where 2( )  is the parameter of interest, 

1( )  being a nuisance parameter. Let S ( )  be the usual sum 

of squares for the model (1) and 

g 2( )( ) = g1 2( )( ),...,gq 2( )( )( )
T

 be the value of 1( )  which 

minimizes S 1( )( ) = S 1( ) , 2( )( )  for given 2( ) . Put 

2( )( ) = g 2( )( ), 2( )( ) and h 2( )( ) = f 2( )( )( ) . 

The approximate confidence region based on the likeli-
hood ratio (the likelihood region for short) is such a set of 
values 2( )  for which 

Y h 2( )( )( )
T

Y h 2( )( )( ) S c2 2
,                (2) 

where =  and c2 = 2 p q,( )  if  is known or 

2 = p q( ) s2  and c2 = F p q,n p,( )  if 
2

 is estimated 

by s2 = S / n p( ) . 

In the first part the solution of the above-mentioned prob-
lem for parameter vector is given which is then compared to 
a result of Clarke [8]. Next we discuss the effect of perturba-
tion of the response vector on the values of parameters in a 
nonlinear model. In the final part our results are applied to 
the problem of finding acceptable reserves for claims in in-
surance business and the problem of preserving privacy of 
stored data. 

2. APPROXIMATE CONFIDENCE REGIONS 

We assume that  

1) f ( )  is a continuous function of  with finite deriva-

tives up to and including degree 4 

2) the vector 
S ( )

 vanishes at one point  where S is 

the corresponding sum of squares  

3) the Bates-Watts intrinsic curvature as well as 

e
T

( )
T TV•••

• )  and e
T

T TV••••
•( )( )  can be ne-

glected where = and e =Y f . 

Following the argument in [9] and using the cubic ap-

proximation of h 2( )( )  we rewrite (2) as 

2
T

2 + 2
T

2
T A22

2
2( )+

1

3 2
T

2
T

2
T A222

2
2( )( ) 2

T
2
T A21

2
2
T A22

1
2( )

 

 

|| 2
T A12

2
2 ||

2
 +

4

1
|| 2

T A22
2

2 ||
2
 +… c2 2

,      (3) 

Table 1. Rules for Multiplication 

U••

•
- n x p x q ; E- s x p 

E
•

••U -n x s x q 
EU••

•( )
ij

a
= EitUtj

a

t

 

U••

•
- n x p x q ; E-q x s •

••U E-n x p x s U••

• E( )
ij

a
= Uit

aEtj

t

 

U••

•
- n x p x q ; E- s x n E[ ]  U••

•
 - s x p x q E[ ] U••

•( )
ij

a
= EatUij

t

t

 

U•••

•
-n x r x p x q;E -s x r 

E U•••

•
- n x s x p x q 

E U•••

•( )
ijk

a
= EitUtjk

a

t
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where 2 = R22 2( ) 2( )  and the neglected terms are of 

degree 4 and higher in . 

Put 2 = b, 2 = b,where b is a unit vector of R
q
, 

, 0, 2 and 2  are boundary points of the region (3) 

and the L-region 2
T

2 c2 2
, respectively. Inserting 

2 = b  into (3) 

and expressing  as a power series in c  we obtain 

Theorem 1. Under the above assumptions 

b( ) = b( ) 1
c

2
b( )+

c2 2

2
b( )+ ...       (4) 

where b is a unit vector of R
q
 and 

b( ) = bT bT A22
2 b,

b( ) =
5

4
bT bT A22

2 b( )
2 1

4
bT A22

2 b 2+
 

|| bT A12
2 b ||

2
     + bT bT A21

2 bT A22
1 b( )  - 

1

3
bT bT bT A222

2 b( )  

 

  b( ) = c || R22
1b ||  

The expression (4) provides a method for construction of 
the likelihood region (2): by substituting different values for 
b we obtain the bounds of this region. 

If there are no nuisance parameters, we obtain the likeli-
hood region for the whole parameter vector . 

Theorem 2.Let d be a unit vector in R
p
. Then  

d( ) = d( ) 1 c / 2( ) d( )+ c2 2 / 2( ) d( )+ ...{ }          (5) 

where the neglected terms are of degree 4 and higher in c  
and 

d( ) = c R 1d  

d( ) = dT dT A••
• d  

d( ) =
5

4
dT dT A••

• d( )
2 1

4
dT A••

• d
2

1

3
dT dT dT A•••

• d( )
                        (6) 

For every array U,U..
. ,U...

.
let us denote 

U.r = U1r ,...Unr( )
T

,Ur = Ur1,...Urp( ),  U.r
a

= 

U1r
a ,...Upr

a( )
T
, .

rs
U = Urs

1 ,...Urs
n( ) T

, and so on. Put 

G =VTV = gij( ) , G 1 = VTV( )
1
= gij( ).  

For one-dimensional parameter vector  (2) becomes the 
likelihood interval with the bound points defined from the 
equation 

p p = gpp 2( )
1/2
c 1 c / 2 + c

2

/ 2                (7) 

where  

c =±c  

= App
p  

= App
p( )

2
+|| A.p

p
||

2
 + Ap.

p App
. 1 / 3Appp

p
                            (8) 

It follows from (7) that there will be one value of p  for 

+c and another for –c (c is always taken positive). Two val-

ues of p so determined will not be symmetric with respect 

to p . 

Clarke [8] proved the similar expression 

 

=pp gpp 2( )
1/2
c 1 c / 2 + c2 2 / 2 + ...    (9) 

where 

= 2 + gpp s s( )+ s
s( )

1

3
k                                (10) 

with 

 

s s
= rpp

6 G 1 G 1VT V..
. G 1( )

p.

p
G 1VT V..

. G 1( )
.p

p
 

s
s = rpp

6 G 1 G 1VT V..
.( )

p.

p
G 1 G 1VT V..

. G 1( )
pp

.
 

k= rpp
6 G 1 G 1 G 1 VT V...

. G 1( )( )
ppp

p

                  (11) 

where 
pp

r  means the (p,p) -element of  the matrix R . 

It is shown in [10] that =  i.e. (7) and (9) are the 
same. 

3.THE PROBLEM OF PERTURBATIONS 

In the second part the problem of additive perturbations 
of the observation vector Y is discussed. Suppose modifying 
Y by addition of a vector u. Let L(  ) denote the log-
likelihood corresponding to the postulated model and  
L(  /  u ) the log-likelihood corresponding to the perturbed 
model, i.e. 

 
      L(  /u )  =  -n/2 ln( 2

2
 ) -1/2 2 Y+u - f (  )  2 

 
St. Laurent and Cook [11, 12] have shown that the so-

called generalized leverage vector and Jacobian leverage 
vector can be used to assess the influence of perturbations on 
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fitted values in nonlinear regression. Our aim is to give a tool 
for assessment of the influence of additive perturbations on 
the values of parameters themselves. Then the relationship 
among the new measure, leverages introduced by Laurent 
and Cook and the intrinsic curvature is explored. 

Let  u  denote the least squares estimator of   under 
L( /u ) .We have  =  0  and L(   ) = L( / 0 ). Let V and 
W be the first and second derivatives of   f(  ) with ele-
ments 

 

        Vj
a
=(  f a /  j)        and     Wjk

a
 = (

2
 fa /  j k )  

 

respectively. For each a=1,...n denote by  Ta  the px px p - 

array with   elements 

 

                 ( 
3
 f a/  j k  l )  .  Put e = Y-f ( ). 

 
Consider a perturbation of Y in the form u = c b, where 

c  R and b =1. 

We define the parameter leverage vector due to a pertur-
bation of the data by c in the direction b as 

                P( c , b ) = (  cb  -  ) / c 

and the Jacobian parameter leverage vector as 

               P ( b ) = lim   P( c, b ) 

                             c 0 

Finally we define the Jacobian parameter leverage matrix 
as 

 

               P = ( V´ V - [ e ´
 ][W ] )-1

 V´  

 

where the square bracket multiplication is as above. 

Theorem 3. The parameter leverage vector due to a per-
turbation of the data by c in the direction b is, up to terms of 
order c [13], 

 

      P(c,b )= A
-1

 V´b + 1/2 b´( P1 +P2 +P3 +P4 ) bc          (12) 

where 

                A= V´V- [ e ´ ][ W] 

                P1 = - [   A
-1

 ][  VA
-1

WA
-1

V´]  

                ( P2 )tu
s
 = (  [I- VA

-1
V´][A

-1
WA

-1
V´]  ) su

t
 

                ( P3) tu
s
  = ([ I- VA

-1
V´][ A-1

WA
-1

V´]st
u
 

                P4 =   [A-1][VA
-1

 (  ei Ti ) A
-1

V´] 

Corollary 1. The Jacobian parameter leverage vector 

due to a perturbation of the data by c in the direction b is 

P(b ) = P b. 
In order to get deeper insight into the matrix P we ex-

press it in a standard form. Let the QR decomposition of 
V be given by V= UR. Consider now the reparameterization 

                                   =   U´ ( f (  ) - f (  
*
) ) 

where    is  called  the normal parameter. It can be shown  
that the Jacobian parameter leverage matrix with respect to 
the normal parameter is 

                               P = ( I - B )
-1

 U´                                (13) 
 

where                     B = [ e ´
 ][ L´ W L ]   ,        L =  R

-1
 

The relationship between the Jacobian parameter lever-
age matrix and the intrinsic curvature of Bates and Watts [4] 
follows from the fact that 

B = [ e ´ N ][ C ] 

where N´ e  is the rotated residual vector and C is the intrin-
sic curvature array. 

The norm Pb  measures the influence of a perturba-
tion of data in the direction b on values of parameters. In the 
case of the derived linear model f ( ) + V(  - ) ,the Jaco-
bian parameter leverage matrix for the normal parameter is 
H = U´. The matrix P takes into account the normal curva-
tures of the expectation surface at f (

*
), while H does not. 

For the normal parameter 

 ( P )max =   max ( I - B )-1
 U´ b  = ( 1- p )

-1
            (14) 

 b =1 

where  p  is the largest  eigenvalue of B. Denoting by bi the 
i-th standard basis vector in R

n
, 

we have 

              Pi = P bi = ( I - B )-1( U´ )i               (15) 

where (U´)i means the i-th column of U´ . Evidently  

                 Pi
2
 = bi´ U  ( I - B )

-2
 U´ bi                               (16) 

We recall that the Jacobian leverage matrix introduced by 
St.Laurent and Cook [11, 12] is J = U ( I - B )-1

 U´. Its i-th 
diagonal element jii measures the rate of change in the fitted  
value  yi  with respect to the rate of change in yi. It follows 
from (16) that if (I - B)

-1 
differs  from (I - B)

-2
 , the case 

maximazing jii may be different from  that  with  the largest 
Jacobian parameter leverage. If (I- B)

-1
 = (I- B)

-2
, then B= O. 

Two special cases in which this occurs are when the model is 
intrinsically linear (the elements of L´W L are zeros) and 
when the model provides an exact fit to the data (the residual 
vector e

*
 is zero). 

4. APPLICATIONS 

4.1. Application of Approximate Confidence Regions to 
IBNR Reserves 

Our results will be applied to the case of computing 
IBNR reserves by the method described above which is 
completely different from chain-ladder methods. The results 
obtained show that asymmetric (with respect to the least 
squares estimators of parameters) confidence intervals are 
more accurate than intervals based on an approximation of 
lower order. 

The model used by Stelltjes [3] f(x, )= exp( x)+  
exp( x) , i.e. 4-parameter bi-exponential model is by com-
putation ill-conditioned. More precisely, the practical im-
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plementation in computational software S-plus leads to the 
error message "singular gradient matrix" (which is more or 
less expectable if one exponential fits data better) and "step 
factor reduced below minimum". In the present paper we do 
not publish the original data of [3] since paper is online and 
insurance data are considered as privacy data. 

If correlations among incremental pure premiums are not 
negligible, what is also case of the data given by [3], usage 
of the correct model produces different values. For example, 
the PROC NLIN based method in [3] gave resulting estima-
tors 3.1994, -0.0754, 29.4446, -0.5480 and 95% confidence 
intervals for estimators  (2.0596, 4.3392), (-0.0942, -0.0566), 
(18.5334, 40.3557) and (-0.6986,-0.3974) of parameters , 

, , , respectively. However, using the correlation, as 
addressed in [3], we obtain the estimators 2.36488, -0.07767, 
21.61184, -0.566532 and 95% confidence intervals for esti-
mators  (1.2746, 3.4551), (-0.0959, -0.05937), (10.664, 
32.5596) and (-0.72473,-0.4083) of parameters , , ,  , 
respectively. 

One of the main practical and theoretical problems of the 

IBNR confidence intervals implementation is the efficient 

estimation of the covariance structure and, consequently, 

sums of squares S . This problem evidently goes behind 

the framework of this contribution and will be addressed in 

some future work. For the related topic see designs of ex-

periments literature addressing the covariance estimation, for 

recent results in the parametrized covariance see e.g. [3].  

Applying the results of the second part of this paper re-
veals the important fact, namely, that we can neglect the ef-
fect of in (7). Here we have the following quantities 
needed for calculation of confidence intervals by means of 
(7) : 

g11 = 0.1129 10 6
, g22 = 0.31 10 10

, g33 = 0.1033 10 4
,

g44 = 0.1968 10 8
, 

 

A11
1
= 0,A22

2
= 0.2134 10 3,A33

3
= 0.1231 10 3,A44

4
= 0.3603 10 3 ,

c = F 1,36,0.95( ) 4.13 . 

Using them we obtain 

 : upper bound 3.1994 + 0.5807=3.7801 ; lower bound 

3.1994 – 0.5807= 2.6187 

   upper bound  –0.0754 +0.013= -0.0624; lower bound  -

0.0754 –0.027= -0.0781 

   upper bound 29.4446 +8.85= 38.2946 lower bound 

29.4446-13.73= 15.7146 

  upper bound –0.5480 +0.057=-0.4903 lower bound –

0.5480-0.157= -0.7050. 

Comparing them to the original results of Stelltjes shows 
that our method gives  narrower intervals than the classical 
approach (the only exception being ). Recall that the 

intervals are not symmetric with respect to the least-squres 
estimates thus reflecting the nonlinearity of the model. 

Admitting for a moment that the hypothesis  = 0 holds, 

we get the famous Mitcherlitz model f(x, )=  +  

exp( x).A thorough analysis of  this model can be found in 

[7, 8, 14] to illustrate that Bates- Watts method is not always 

reliable . It follows that for this model our approach 

outperforms the classical one based on quadratic 

approximation as it produces confidence regions whose true 

coverage is closer to the nominal level than for the classical 

ones. 

The outlook of the research in this direction brings a pos-

sibility to compute 2-parameter confidence interval, for in-

stance for ,( ) or ,( ) . Notice that Stelltjes [3] has com-

puted S ˆ( )  as the sum of weighted least squares and not as 

reported in (2.3.1), p. 359, it has been a typo. Thus, we are 

using the same approach as Stehlík [15] and employ a weight 

function that is inversely proportional to the variance of the 

data.  

Probably, the main objective of the actuarial work is to 
construct the confidence interval for IBNR reserves for vari-
ous accident quarters. A classical approach how to construct 
approximate confidence intervals is given by Bates and 
Watts [4], p. 58. For instance, 95% confidence interval for 
total IBNR for data in [3] is (27459851, 32751218) and 
(25254267, 40083031) when the parameter variance - co-
variance matrix is used (see [3]). The outlook is to construct 
a confidence interval based on cubic approximation of the 
model function (1). However, one should take care about the 
fact, that traditional nonlinear regression assumes that the 
error terms are normal which is a symmetric distribution 
with a range of whole real line. Incremental pure premium 
data may actually be skewed and can hardly ever be highly 
negative, therefore, using the normal distribution is ap-
proximation at best. 

4.2. Application of Additive Perturbation Models for  
Privacy 

Preserving Data Mining in Insurance 

In insurance companies, many data sets have to be stored.  

A large fraction of them uses randomized data distortion 
techniques to mask the data for preserving the privacy of 

sensitive data. The additive perturbation attempts to hide the 

sensitive data by randomly modifying the data values often 
using additive noise. Random matrices have ‘predictable’ 

structures in the spectral domain and it develops a random 

matrix-based ‘Spectral Filtering Technique’ (SPF) to retrieve 
original data from the dataset distorted by adding random 

values (see [16]). In the present example we consider the 

same model as in section 4.1. As mentioned above the PROC 
NLIN based method gave estimators 3.1994, -0.0754, 

29.4446, -0.5480 of model parameters. Then for x=10 we 

have f=1.628027.  

Assuming that the error has a Gaussian N(0,1) form we 
get an observed value of 3.97282 and additive perturbation 
by N(0,0.001) will give us -0.0001432867, while the additive 
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perturbation by N(0,0.01) will give  3.949242. Thus tuning 
of the standard deviation can tune the necessary level of pri-
vacy of the data. The control over this procedure is guaran-
teed by the theoretical results in the section 3, and may be 
properly analysed for every insurance model.  
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