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Abstract:

Objectives:

To study the asymptotic theory of the randomly wieghted partial sum process of powers of k-spacings from the uniform distribution.

Methods:

Earlier results on the distribution of the uniform incremental randomly weighted sums.

Methods:

Based on theorems on weak and strong approximations of partial sum processes.

Results and conculsions:

Our first contribution is to classify the multitude of earlier proofs in Section 3. The second contribution consists of a new class of proofs.
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1. INTRODUCTION

Let   be
the order statistics of a random sample of size (n-1) from the
U(0,1)  distribution.  Let  k=1,2,  ...  be  arbitrary  but  fixed  and
assume that n=mk. The U (0,1) k-spacings are defined as

(1)

Let  X1,  X2,...  be  iidrv  with  E(Xi)=µ,  Var(Xi)=ó2<∞  and
common distribution  function  F(.).  Assume that  the  Xi’s  are
independent of the Ui's. Define

(2)

where [s] is the integer part of s and r>0 is fixed.

Looking at Sm (t,k,r,F) of (2) as a weighted partial sum of
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the X's, Van Assche [1] obtained the exact distribution of S2 (1,
1,1, F). Johnson and Kotz [2] studied some generalizations of
Van Assche results. Soltani and Homei [3] considered the finite
sample distribution of Sn (1,1,1, F). Soltani and Roozegar [4]
considered the finite sample distribution of a case similar to Sm

(1,k,1, F) in which the spacings (1) are not equally spaced. It is
interesting to note that  Sm  (t,k,r,  F)  of  (2)  is  also a randomly
weighted partial sum of powers of k-spacings from the U(0,1)
distribution.

Here,  we  will  obtain  the  asymptotic  distribution  of  the
stochastic process

(3)

where

0 = 𝑈(0) ≤ 𝑈(1) ≤ 𝑈(2) ≤⋅⋅⋅≤ 𝑈(𝑛−1) ≤ 𝑈(𝑛) = 1

 𝑅𝑖,𝑘 = 𝑈(𝑖𝑘) − 𝑈((𝑖−1)𝑘), 𝑖 = 1,2,⋅⋅⋅, 𝑚. 

𝑆𝑚(𝑡, 𝑘, 𝑟, 𝐹) = {
∑

[𝑚𝑡]
𝑖=1 𝑅𝑖,𝑘

𝑟 𝑋𝑖,
1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
,
 

𝛼𝑚(𝑡, 𝑘, 𝑟, 𝐹) = {
𝑚

1

2{𝑘𝑟𝑚𝑟−1𝑆𝑚(𝑡, 𝑘, 𝑟, 𝐹)

− 𝑡𝜇𝜇𝑟,𝑘},
1

𝑚
≤ 𝑡 ≤ 1

0,

0 ≤ 𝑡 <
1

𝑚
,
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(4)

and Γ(.) is the gamma function.

The motivations and justifications of this work are given
next. First, as noted by Johnson and Kotz [2], S2 (1,1,1, F) is a
random mixture of distributions and as such it  has numerous
applications  in  Sociology  and  in  Biology.  Second,  the
asymptotic  theory  of  Sm  (t,k,r,  F)  is  a  generalization  of
important  results  of  Kimball  [5],  Darling  [6],  LeCam  [7],
Sethuraman and Rao [8], Koziol [9], Aly [10] and Aly [11] for
sums  of  powers  of  spacings  from  the  U(0,1)  distribution.
Finally, we solve the open problem of proving the asymptotic
normality of  Sm  (1,k,1,  F)  proposed by Soltani  and Roozegar
[4].

2. METHODS

2.1. The asymptotic distribution of αm (., k,r, F)

Let Y1,Y2,... be iidrv with the exponential distribution with
mean  1  which  are  independent  of  the  Xi's.  By  Proposition
13.15 of Breiman [12] we have for each n,

Hence, for each m,

where for 1≤i≤m,

are iid Gamma (k,1) random variables. Hence, for each m

(5)

and

(6)

where

(7)

Let µl,k be as in (4). Note that

(8)

and

The following Theorem will be needed in the sequel.

Theorem A.  There exists a probability space on which a
two-dimensional Wiener process 
is defined such that

(9)

where E W (s)=0, and

(10)

Theorem  A  follows  from  the  results  of  Einmahl  [13],
Zaitsev  [14]  and  Götze  and  Zaitsev  [15].

The main result of this paper is the following Theorem.

Theorem  1.  On  some  probability  space,  there  exists  a
sequence of mean zero Gaussian processes Γm(t, k, r, F), 0≤t≤1
such that

(11)

where  for  each  m,
and

(12)

Theorem 1 follows from (6) and the following Theorem.

Theorem 2. On the probability space of Theorem A,

(13)

where W (.) is as in (9).

Proof  of  Theorem  2:  We  will  only  prove  here  the  case
when E(X)=µ≠0. The case when µ=0 is straightforward and can
be looked at as a special case of the case µ≠0. Note that

(14)

where

 𝜇𝑙,𝑘 =
Γ(𝑘+𝑙)

Γ(𝑘)
, 𝑘 ≥ 1 𝑙 > 0 

 {0 = 𝑈(0), 𝑈(1), 𝑈(2),⋅⋅⋅, 𝑈(𝑛−1), 𝑈(𝑛) = 1}

=
𝐷

{0,
𝑌1

∑𝑛
𝑖=1 𝑌𝑖

,
𝑌1+𝑌2

∑𝑛
𝑖=1 𝑌𝑖

,⋅⋅⋅,
𝑌1+𝑌2+⋅⋅⋅+𝑌𝑛−1

∑𝑛
𝑖=1 𝑌𝑖

, 1}. 

{𝑅𝑖,𝑘, 1 ≤ 𝑖 ≤ 𝑚} =
𝐷

{
𝑍𝑖,𝑘

∑𝑚
𝑖=1 𝑍𝑖,𝑘

, 1 ≤ 𝑖 ≤ 𝑚}, 

𝑍𝑖,𝑘 = 𝑌(𝑖−1)𝑘+1 +⋅⋅⋅ +𝑌𝑖𝑘 

𝑆𝑚(𝑡, 𝑘, 𝑟, 𝐹) =
𝐷

∑
[𝑚𝑡]
𝑖=1 𝑍𝑖,𝑘

𝑟 𝑋𝑖/(∑𝑚
𝑖=1 𝑍𝑖,𝑘)

𝑟
, 0 ≤ 𝑡 ≤ 1 

𝛼𝑚(⋅, 𝑘, 𝑟, 𝐹) =
𝐷

𝛽𝑚(⋅, 𝑘, 𝑟, 𝐹), 

 

 

𝐸(𝑍𝑖,𝑘
𝑟 𝑋𝑖) = 𝜇𝜇𝑟,𝑘 , 

 𝜎𝑟,𝑘
2 = 𝑉𝑎𝑟(𝑍𝑖,𝑘

𝑟 𝑋𝑖) = 𝜎2𝜇2𝑟,𝑘 + 𝜇2{𝜇2𝑟,𝑘 − 𝜇𝑟,𝑘
2 } 

𝛽𝑚(𝑡, 𝑘, 𝑟, 𝐹) = {𝑚
1

2 {𝑘𝑟𝑚𝑟−1 ∑
[𝑚𝑡]
𝑖=1 𝑍𝑖,𝑘

𝑟 𝑋𝑖

/(∑𝑚
𝑖=1 𝑍𝑖,𝑘)

𝑟
− 𝑡𝜇𝜇𝑟,𝑘} ,

1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
.

 

 𝐶𝑜𝑣(𝑍𝑖,𝑘
𝑟 𝑋𝑖 , 𝑍𝑖,𝑘) = 𝑟𝜇𝜇𝑟,𝑘 . 

{𝐖𝑡(𝑠) = (𝑊1(𝑠), 𝑊2(𝑠)); 𝑠 ≥ 0} 

 sup
0≤𝑠≤1

‖(∑[𝑚𝑠]
𝑗=1 (𝑍𝑗,𝑘

𝑟 𝑋𝑗 − 𝜇𝜇𝑟,𝑘), ∑[𝑚𝑠]
𝑗=1

(𝑍𝑗,𝑘 − 𝑘))
𝑡

− 𝐖𝑡([𝑚𝑠])‖ =
𝑎.𝑠.

𝑜 (𝑚
1

4), 

𝐸𝐖(𝑠)𝐖𝑡(𝑡) = min(𝑠, 𝑡) [
𝜎𝑟,𝑘

2 𝑟𝜇𝜇𝑟,𝑘

𝑟𝜇𝜇𝑟,𝑘 𝑘
]. 

sup
0≤𝑡≤1

|𝛼𝑚(𝑡, 𝑘, 𝑟, 𝐹) − Γ𝑚(𝑡, 𝑘, 𝑟, 𝐹)| =
𝑃

𝑜 (𝑚−
1

4), 

Γ𝑚(𝑡, 𝑘, 𝑟, 𝐹) =
𝐷

Γ(𝑡, 𝑘, 𝑟, 𝐹)

 𝐸{Γ(𝑡, 𝑘, 𝑟, 𝐹)Γ(𝑠, 𝑘, 𝑟, 𝐹)} = (𝑡 ∧ 𝑠)𝜎𝑟,𝑘
2 −

𝑟2𝜇2𝜇𝑟,𝑘
2

𝑘
𝑡𝑠. 

sup
0≤𝑡≤1

|𝛽𝑚(𝑡, 𝑘, 𝑟, 𝐹) − 𝑚−
1

2 {𝑊1(𝑚𝑡)

−
𝑡𝑟𝜇𝜇𝑟,𝑘

𝑘
𝑊2(𝑚)}| =

𝑎.𝑠.
𝑜 (𝑚−

1

4), 

𝛽𝑚(𝑡, 𝑘, 𝑟, 𝐹) =
𝑚

1
2𝑘𝑟𝐴𝑚(𝑡)

(
1

𝑚
∑𝑚

𝑖=1 𝑍𝑖,𝑘)
𝑟, 

𝐴𝑚(𝑡) =
1

𝑚
∑[𝑚𝑡]

𝑖=1 𝑍𝑗,𝑘
𝑟 𝑋𝑗 − 𝑡𝜇𝜇𝑟,𝑘

1

𝑘𝑟 (
1

𝑚
∑𝑚

𝑖=1 𝑍𝑗,𝑘)
𝑟

 

=
1

𝑚
∑

[𝑚𝑡]
𝑖=1 (𝑍𝑗,𝑘

𝑟 𝑋𝑗 − 𝜇𝜇𝑟,𝑘) + 𝜇𝜇𝑟,𝑘
([𝑚𝑡]−𝑚𝑡)

𝑚
 

 

𝐸(𝑍𝑖,𝑘
𝑙 ) = 𝜇𝑙,𝑘 , 
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(15)

It is clear that, uniformly in t, 0≤t≤1,

(16)

By (9), (15) and (16) we have, uniformly in t,0≤t≤1,

(17)

By  Lemma  1.1.1  of  Csörgö  and  Révész  [17]  we  have,
uniformly in t,0≤t≤1,

(18)

By (17) and (18) we have, uniformly in t,0≤t≤1,

(19)

By the LIL

(20)

By (14), (19) and (20) we have, uniformly in t,0≤t≤1,

This proves (13).

Corollary 1. By (4), (8) and (12),

(21)

where

W(.)  is  a  Wiener  process,  B(.)  is  a  Brownian bridge  and
W(.) and B(.) are independent.

Corollary 2. By (11) and (21) we have, as m→∞,

(22)

and, in particular,

(23)

Some special cases of (22) and (23) are given . For r=1 and
k≥1,

and

and

where

3. RESULTS

In this section, we will use the same notation of Section 1

3.1. The scaled sum case

Define

and

We can prove that

where

(W1(.),W2(.),W3(.))
t  is  a  mean  zero  Gaussian  vector  with

covariance (t Λ s) ∑ 1 and

Let

We can show that

+𝜇𝜇𝑟,𝑘𝑡 − 𝑡𝜇𝜇𝑟,𝑘
1

𝑘𝑟 (
1

𝑚
∑𝑚

𝑖=1 (𝑍𝑗,𝑘 − 𝑘) + 𝑘)
𝑟

. 

|[𝑚𝑡]−𝑚𝑡|

𝑚
<

1

𝑚
. 

𝐴𝑚(𝑡) =
𝑎.𝑠. 1

𝑚
𝑊1(𝑚𝑡) +

1

𝑚
(𝑊1([𝑚𝑡]) − 𝑊1(𝑚𝑡)) + 𝑂 (

1

𝑚
) + 

𝜇𝜇𝑟,𝑘𝑡 − 𝑡𝜇𝜇𝑟,𝑘 (1 +
1

𝑚𝑘
𝑊2(𝑚) + 𝑜(𝑚−

3

4))
𝑟

+ 𝑜(𝑚−
3

4). 

1

𝑚
|𝑊1([𝑚𝑡]) − 𝑊1(𝑚𝑡)| =

𝑎.𝑠.
𝑂(

1

𝑚
√log𝑚). 

 𝐴𝑚(𝑡) =
𝑎.𝑠. 1

𝑚
𝑊1(𝑚𝑡) + 𝑂(

1

𝑚
√log𝑚) + 𝜇𝜇𝑟,𝑘𝑡

− 𝑡𝜇𝜇𝑟,𝑘 (1 +
1

𝑚𝑘
𝑊2(𝑚) + 𝑜(𝑚−

3

4))
𝑟

+ 𝑜(𝑚−
3

4) 

 =
𝑎.𝑠. 1

𝑚
𝑊1(𝑚𝑡) −

𝑡𝑟𝜇𝜇𝑟,𝑘

𝑚𝑘
𝑊2(𝑚) + 𝑜(𝑚−

3

4). 

 

(
1

𝑚
∑𝑚

𝑖=1 𝑍𝑖,𝑘)
𝑟

=
𝑎.𝑠.

(𝑘 + 𝑂 (𝑚−
1

2√loglog𝑚))

𝑟

=
𝑎.𝑠.

𝑘𝑟 + 𝑂 (𝑚−
1

2√loglog𝑚). 

 

𝛽𝑚(𝑡, 𝑘, 𝑟, 𝐹) =
𝑎.𝑠. 𝑚

1
2𝑘𝑟

𝑘𝑟+𝑂(𝑚
−

1
2√loglog𝑚)

{
1

𝑚
𝑊1(𝑚𝑡) −

𝑡𝑟𝜇𝜇𝑟,𝑘

𝑚𝑘
𝑊2(𝑚) + 𝑜(𝑚−

3

4)} 

 
=

𝑎.𝑠.
𝑚−

1

2 {𝑊1(𝑚𝑡) −
𝑡𝑟𝜇𝜇𝑟,𝑘

𝑘
𝑊2(𝑚)} + 𝑜(𝑚−

1

4). 

 Γ(⋅, 𝑘, 𝑟, 𝐹) =
𝐷

𝜆𝑟,𝑘𝑊(⋅) +
𝑟𝜇Γ(𝑟+𝑘)

√𝑘Γ(𝑘)
𝐵(⋅), 

 𝜆𝑟,𝑘
2 =

Γ(2𝑟+𝑘)

Γ(𝑘)
𝜎2 + 𝜇2 {

Γ(2𝑟+𝑘)

Γ(𝑘)
−

(𝑟2+𝑘)Γ2(𝑟+𝑘)

𝑘Γ2(𝑘)
}, 

𝛼𝑚(⋅, 𝑘, 𝑟, 𝐹) →
𝐷

Γ(⋅, 𝑘, 𝑟, 𝐹) =
𝐷

𝜆𝑟,𝑘𝑊(⋅) +
𝑟𝜇Γ(𝑟+𝑘)

√𝑘Γ(𝑘)
𝐵(⋅) 

𝛼𝑚(1, 𝑘, 𝑟, 𝐹) →
𝐷

𝑁(0, 𝜆𝑟,𝑘
2 ). 

 Γ(⋅, 𝑘, 1, 𝐹) = 𝜎 √𝑘(𝑘 + 1)𝑊(⋅) + 𝜇√𝑘𝐵(⋅) 

𝛼𝑚(1, 𝑘, 1, 𝐹) →
𝐷

𝑁(0, 𝑘(𝑘 + 1)𝜎2). For 𝑟 > 0 and 𝑘 = 1, 

Γ(⋅ ,1, 𝑟, 𝐹) =
𝐷

𝜆𝑟,1𝑊(⋅) + 𝑟𝜇Γ(𝑟 + 1)𝐵(⋅) 

 𝛼𝑚(1,1, 𝑟, 𝐹) →
𝐷

𝑁(0, 𝜆𝑟,1
2 ), 

 𝜆𝑟,1
2 = 𝜎2Γ(2𝑟 + 1) + 𝜇2{Γ(2𝑟 + 1) − (1 + 𝑟2)Γ2(𝑟 + 1)}. 

 𝑇𝑚,1(𝑡, 𝑘, 𝑟, 𝐹) = {

1

∑𝑚
𝑗=1 𝑋𝑗

∑
[𝑚𝑡]
𝑖=1 𝑅𝑖,𝑘

𝑟 𝑋𝑖 ,
1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚

 

𝛾𝑚,1(𝑡, 𝑘, 𝑟, 𝐹) = {
𝑚

1

2 {
𝑘𝑟𝑚𝑟

𝜇𝑟,𝑘
𝑇𝑚,1(𝑡, 𝑘, 𝑟, 𝐹) − 𝑡} ,

1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
.
 

𝛾𝑚,1(𝑡, 𝑘, 𝑟, 𝐹) →
𝐷

𝛾1(𝑡, 𝑘, 𝑟, 𝐹), 

𝛾1(𝑡, 𝑘, 𝑟, 𝐹) =
1

𝜇𝜇𝑟,𝑘
𝑊1(𝑡) −

𝑟

𝑘
𝑡𝑊2(1) −

1

𝜇
𝑡𝑊3(1), 

∑1 = [

𝜎𝑟,𝑘
2 𝑟𝜇𝜇𝑟,𝑘 𝜎2𝜇𝑟,𝑘

𝑟𝜇𝜇𝑟,𝑘 𝑘 0

𝜎2𝜇𝑟,𝑘 0 𝜎2

]. 

𝛿𝑟,𝑘
2 = (

𝜇2𝑟,𝑘

𝜇𝑟,𝑘
2 − 1) (

𝜎2

𝜇2 + 1) −
𝑟2

𝑘
. 
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where W(.) is a Brownian Motion and B(.) is a Brownian
bridge and W(.) and B(.) are independent. Consequently,

When r=1,k≥1

When r>0,k=1

3.2. The Centered Sum Process

Let  and define

and

We can prove that

where

(W1(.),  W2(.),  W3(.))
t  is a mean zero Gaussian vector with

covariance (t Λ s) ∑2 and

We can show that

where W(.) is a Brownian Motion and B (.) is a Brownian
bridge and W(.) and B(.) are independent. Consequently,

When r=1,k≥1

When r> 0,k=1

3.3. The Renewal Process

For simplicity, we will consider the case of r=1. Define

and

By (5), for each m

(24)

Note that (see (3))

and hence, by Theorem 1

where Γm (., k, 1, F) is as in (11).

Theorem 3. On the probability space of Theorem A,

where

(25)

and W(.) is as in (9).

𝛾1(𝑡, 𝑘, 𝑟, 𝐹) =
𝐷

𝛿𝑟,𝑘𝑊(𝑡) + √
𝑟2

𝑘
+

𝜎2

𝜇2
𝐵(𝑡), 

 
𝛾𝑚,1(1, 𝑘, 𝑟, 𝐹) →

𝐷
𝑁(0, 𝛿𝑟,𝑘

2 ). 

 𝛿1,𝑘
2 =

𝜎2

𝑘𝜇2
. 

 
𝛿𝑟,1

2 = (
Γ(2𝑟+1)

Γ2(𝑟+1)
− 1) (

𝜎2

𝜇2 + 1) − 𝑟2. 

𝑋 =
1

𝑚
∑𝑚

𝑗=1 𝑋𝑗 

𝑇𝑚,2(𝑡, 𝑘, 𝑟, 𝐹) = {
∑[𝑚𝑡]

𝑖=1 𝑅𝑖,𝑘
𝑟 (𝑋𝑖 − 𝑋),

1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚

 

𝛾𝑚,2(𝑡, 𝑘, 𝑟, 𝐹) = {
𝑘𝑟𝑚𝑟−

1

2𝑇𝑚,2(𝑡, 𝑘, 𝑟, 𝐹),
1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
.
 

𝛾𝑚,2(𝑡, 𝑘, 𝑟, 𝐹) →
𝐷

𝛾2(𝑡, 𝑘, 𝑟, 𝐹), 

𝛾2(𝑡, 𝑘, 𝑟, 𝐹) = 𝑊1(𝑡) − 𝜇𝑊2(𝑡) − 𝜇𝑟,𝑘𝑡𝑊3(1), 

 ∑2 = [

𝜎𝑟,𝑘
2 𝜇(𝜇2𝑟,𝑘 − 𝜇𝑟,𝑘

2 ) 𝜎2𝜇𝑟,𝑘

𝜇(𝜇2𝑟,𝑘 − 𝜇𝑟,𝑘
2 ) 𝜇2𝑟,𝑘 − 𝜇𝑟,𝑘

2 0

𝜎2𝜇𝑟,𝑘 0 𝜎2

]. 

𝛾2(𝑡, 𝑘, 𝑟, 𝐹) =
𝐷

𝜎 {√𝜇2𝑟,𝑘 − 𝜇𝑟,𝑘
2 𝑊(𝑡) + 𝜇𝑟,𝑘𝐵(𝑡)}, 

 𝛾𝑚,2(1, 𝑘, 𝑟, 𝐹) →
𝐷

𝑁 (0, 𝜎2(𝜇2𝑟,𝑘 − 𝜇𝑟,𝑘
2 )). 

 𝛾𝑚,2(1, 𝑘, 𝑟, 𝐹) →
𝐷

𝑁(0, 𝑘𝜎2). 

 𝛾𝑚,2(1, 𝑘, 𝑟, 𝐹) →
𝐷

𝑁(0, 𝜎2(Γ(2𝑟 + 1) − Γ2(𝑟 + 1))). 

𝑆𝑚
∗ (𝑡) = {

1

𝜇
∑

[𝑚𝑡]
𝑖=1 𝑅𝑖,𝑘𝑋𝑖 ,

1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
,
 

𝑇𝑚
∗ (𝑡) = {

1

𝜇
∑

[𝑚𝑡]
𝑖=1 𝑍𝑖,𝑘𝑋𝑖/(∑𝑚

𝑖=1 𝑍𝑖,𝑘),
1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
,
 

𝑁𝑚(𝑡) = inf{𝑢: 𝑆𝑚
∗ (𝑢) > 𝑡}, 

𝑀𝑚(𝑡) = inf{𝑢: 𝑇𝑚
∗ (𝑢) > 𝑡}, 

𝛼𝑚
∗ (𝑡) = {

𝑚
1

2𝑘𝜇{𝑆𝑚
∗ (𝑡) − 𝑡},

1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
,
 

𝛽𝑚
∗ (𝑡) = {

𝑚
1

2𝑘𝜇{𝑇𝑚
∗ (𝑡) − 𝑡},

1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚
,
 

𝜂𝑚(𝑡) = 𝑚
1

2𝑘𝜇{𝑡 − 𝑁𝑚(𝑡)} 

 𝜉𝑚(𝑡) = 𝑚
1

2𝑘𝜇{𝑡 − 𝑀𝑚(𝑡)}. 

𝛼𝑚
∗ (⋅) =

𝐷
𝛽𝑚

∗ (⋅) and 𝜂𝑚(⋅) =
𝐷

𝜉𝑚(⋅). 

𝛼𝑚
∗ (⋅) = 𝛼𝑚(⋅, 𝑘, 1, 𝐹) 

sup
0≤𝑡≤1

|𝛼𝑚
∗ (𝑡) − Γ𝑚(𝑡, 𝑘, 1, 𝐹)| =

𝑃
𝑜 (𝑚−

1

4), 

sup
0≤𝑡≤1

|𝜂𝑚(𝑡) − Γ𝑚(𝑡)| =
𝑃

𝑜 (𝑚−
1

4(log𝑚loglog𝑚)
1

2), 

Γ𝑚(𝑡) = 𝑚−
1

2{𝑊1(𝑚𝑡) − 𝑡𝜇𝑊2(𝑚)} 
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Theorem  3  follows  directly  from  (24)  and  the  following
Theorem.

Theorem 4. On the probability space of Theorem A,

where Γm(t) is as in (25).

Proof: By (7),

Note that

Hence

(26)

where

and

By Theorem 2 and the LIL for Wiener processes,

(27)

and

By a Lemma of Horváth [18]

and hence

(28)

By the proof of Step 5 of Horváth [18] and Theorem 2 we
can show that

(29)

As to Em3,

(30)

where

and

By (28) and Lemma 1.1.1 of Csörgö and Révész [17] we
have, uniformly in t,0≤t≤1,

(31)

By (28) and the LIL for Wiener processes,

(32)

By (30)-(32),

(33)

By (26)-(33) we obtain Theorem 4.

4. THE RANDOM VECTOR CASE

and

Theorem 5 is a generalization of Theorem 1.

Theorem  5.  On  some  probability  space,  there  exists  a
mean  zero  sequence  of  Gaussian  processes

 such that

sup
0≤𝑡≤1

|𝜉𝑚(𝑡) − Γ𝑚(𝑡)| =
𝑎.𝑠.

𝑂 (𝑚−
1

4(log𝑚loglog𝑚)
1

2), 

𝛽𝑚
∗ (⋅) = 𝛽𝑚(⋅, 𝑘, 1, 𝐹). 

𝜉𝑚(𝑡) = 𝛽𝑚
∗ (𝑀𝑚(𝑡)) − 𝑚

1

2𝑘𝜇{𝑇𝑚(𝑀𝑚(𝑡)) − 𝑡}. 

sup
0≤𝑡≤1

|𝜉𝑚(𝑡) − Γ𝑚(𝑡)| ≤ 𝐸𝑚1 + 𝐸𝑚2 + 𝐸𝑚3, 

𝐸𝑚1 = sup
0≤𝑡≤1

|𝛽𝑚
∗ (𝑀𝑚(𝑡)) − Γ𝑚(𝑀𝑚(𝑡))|, 

𝐸𝑚2 = 𝑚
1

2𝑘𝜇 sup
0≤𝑡≤1

|𝑇𝑚(𝑀𝑚(𝑡)) − 𝑡| 

 𝐸𝑚3 = sup
0≤𝑡≤1

|Γ𝑚(𝑀𝑚(𝑡)) − Γ𝑚(𝑡)|. 

𝐸𝑚1 =
𝑎.𝑠.

𝑜 (𝑚−
1

4). 

sup
0≤𝑡≤1

|𝑇𝑚(𝑡) − 𝑡| =
𝑎.𝑠.

𝑂(√𝑚−1loglog𝑚 ) 

sup
0≤𝑡≤1

|𝑀𝑚(𝑡) − 𝑡| ≤ sup
0≤𝑡≤1

|𝑇𝑚(𝑡) − 𝑡| 

sup
0≤𝑡≤1

|𝑀𝑚(𝑡) − 𝑡| =
𝑎.𝑠.

𝑂(√𝑚−1loglog𝑚). 

𝐸𝑚2 =
𝑎.𝑠.

𝑂 (𝑚−
1

4log𝑚). 

𝐸𝑚3 ≤ 𝐸𝑚31 + 𝐸𝑚32, 

𝐸𝑚31 = sup|𝑊1(𝑀𝑚(𝑡)) − 𝑊1(𝑡)| 

𝐸𝑚32 = 𝑚−
1

2𝜇|𝑊2(𝑚)|sup|𝑀𝑚(𝑡) − 𝑡|. 

𝐸𝑚31 = sup|𝑊1(𝑡 + (𝑀𝑚(𝑡) − 𝑡)) − 𝑊1(𝑡)| 

     =
𝑎.𝑠.

sup

0≤ℎ≤𝑚
−

1
2(loglog𝑚)

1
2

|𝑊1(𝑡 + ℎ) − 𝑊1(𝑡)| 

     =
𝑎.𝑠.

𝑂 (𝑚−
1

4√log𝑚loglog𝑚). 

𝐸𝑚32 =
𝑎.𝑠.

𝑂 (𝑚−
1

2loglog𝑚). 

𝐸𝑚3 =
𝑎.𝑠.

𝑂 (𝑚−
1

4√log𝑚loglog𝑚). 

𝑆𝑚(𝑡, 𝑘, 𝑟, 𝐹) = {
∑

[𝑚𝑡]
𝑖=1 𝑅𝑖,𝑘

𝑟 𝑋𝑖,
1

𝑚
≤ 𝑡 ≤ 1

0, 0 ≤ 𝑡 <
1

𝑚

 

Let  X1,  X2,...  be  iid  random  vectors  with

 and
 Assume that  the  Uis  and  the Ri,ks  are  same as  in  Section 1
 and  are  independent  of  X1, X2,... Define

 

 {Γ𝑚(𝑡, 𝑘, 𝑟, 𝐹), 0 ≤ 𝑡 ≤ 1} 



6   The Open Mathematics, Statistics and Probability Journal, 2020, Volume 10 Emad-Eldin A. A. Aly

where, for each m,

and

Corollary 1 *. By (11) and (21) we have, as m→∞,

and, in particular,

where

Particular cases of Corollary 1* are given next.

For r = 1 and k ≥ 1,

and

For r > 0 and k = 1,

and

where

CONCLUSION

We proved the weak convergence of a stochastic process
defined in terms of partial sums of randomly weighted powers
of  uniform  spacings.  The  asymptotic  results  of  several
important  generalizations  and  special  cases  are  given.
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